将灰度值映射到图像中的 RGB 值

map grayscale values to RGB values in image

让我们考虑一个灰度值,其值在 [0, 255] 范围内。我们如何才能有效地将每个值映射到一个 RGB 值?

到目前为止,我想出了以下实现:

# function for colorizing a label image:
def label_img_to_color(img):
    label_to_color = {
    0: [128, 64,128],
    1: [244, 35,232],
    2: [ 70, 70, 70],
    3: [102,102,156],
    4: [190,153,153],
    5: [153,153,153],
    6: [250,170, 30],
    7: [220,220,  0],
    8: [107,142, 35],
    9: [152,251,152],
    10: [ 70,130,180],
    11: [220, 20, 60],
    12: [255,  0,  0],
    13: [  0,  0,142],
    14: [  0,  0, 70],
    15: [  0, 60,100],
    16: [  0, 80,100],
    17: [  0,  0,230],
    18: [119, 11, 32],
    19: [81,  0, 81]
    }

img_height, img_width = img.shape

img_color = np.zeros((img_height, img_width, 3))
for row in range(img_height):
    for col in range(img_width):
        label = img[row, col]
        img_color[row, col] = np.array(label_to_color[label])
return img_color

但是,如您所见,它效率不高,因为有两个 "for" 循环。

这个问题也在 Convert grayscale value to RGB representation? 中被问到,但没有提出有效的实施建议。

一种比对所有像素进行双重 for 循环更有效的方法是:

rgb_img = np.zeros((*img.shape, 3)) 
for key in label_to_color.keys():
    rgb_img[img == key] = label_to_color[key]