如何访问scala中spark数据框的列索引进行计算
how to access the column index for spark dataframe in scala for calculation
我是 Scala 编程的新手,我在 R 方面的工作非常广泛,但是在为 Scala 工作时,很难在循环中工作以提取特定列以对列值执行计算
让我用一个例子来解释一下:
我在加入 2 个数据帧后到达了最终数据帧,
现在我需要执行像
这样的计算
以上是参考列的计算,所以计算后我们将得到下面的spark dataframe
如何在 scala 中引用 for 循环中的列索引来计算 spark 数据帧中的新列值
这是一种解决方案:
Input Data:
+---+---+---+---+---+---+---+---+---+
|a1 |b1 |c1 |d1 |e1 |a2 |b2 |c2 |d2 |
+---+---+---+---+---+---+---+---+---+
|24 |74 |74 |21 |66 |65 |100|27 |19 |
+---+---+---+---+---+---+---+---+---+
压缩列以删除不匹配的列:
val oneCols = data.schema.filter(_.name.contains("1")).map(x => x.name).sorted
val twoCols = data.schema.filter(_.name.contains("2")).map(x => x.name).sorted
val cols = oneCols.zip(twoCols)
//cols: Seq[(String, String)] = List((a1,a2), (b1,b2), (c1,c2), (d1,d2))
使用foldLeft函数动态添加列:
import org.apache.spark.sql.functions._
val result = cols.foldLeft(data)((data,c) => data.withColumn(s"Diff_${c._1}",
(col(s"${lit(c._2)}") - col(s"${lit(c._1)}"))/col(s"${lit(c._2)}")))
结果如下:
result.show(false)
+---+---+---+---+---+---+---+---+---+------------------+-------+-------------------+--------------------+
|a1 |b1 |c1 |d1 |e1 |a2 |b2 |c2 |d2 |Diff_a1 |Diff_b1|Diff_c1 |Diff_d1 |
+---+---+---+---+---+---+---+---+---+------------------+-------+-------------------+--------------------+
|24 |74 |74 |21 |66 |65 |100|27 |19 |0.6307692307692307|0.26 |-1.7407407407407407|-0.10526315789473684|
+---+---+---+---+---+---+---+---+---+------------------+-------+-------------------+--------------------+
我是 Scala 编程的新手,我在 R 方面的工作非常广泛,但是在为 Scala 工作时,很难在循环中工作以提取特定列以对列值执行计算
让我用一个例子来解释一下:
我在加入 2 个数据帧后到达了最终数据帧,
现在我需要执行像
以上是参考列的计算,所以计算后我们将得到下面的spark dataframe
如何在 scala 中引用 for 循环中的列索引来计算 spark 数据帧中的新列值
这是一种解决方案:
Input Data:
+---+---+---+---+---+---+---+---+---+
|a1 |b1 |c1 |d1 |e1 |a2 |b2 |c2 |d2 |
+---+---+---+---+---+---+---+---+---+
|24 |74 |74 |21 |66 |65 |100|27 |19 |
+---+---+---+---+---+---+---+---+---+
压缩列以删除不匹配的列:
val oneCols = data.schema.filter(_.name.contains("1")).map(x => x.name).sorted
val twoCols = data.schema.filter(_.name.contains("2")).map(x => x.name).sorted
val cols = oneCols.zip(twoCols)
//cols: Seq[(String, String)] = List((a1,a2), (b1,b2), (c1,c2), (d1,d2))
使用foldLeft函数动态添加列:
import org.apache.spark.sql.functions._
val result = cols.foldLeft(data)((data,c) => data.withColumn(s"Diff_${c._1}",
(col(s"${lit(c._2)}") - col(s"${lit(c._1)}"))/col(s"${lit(c._2)}")))
结果如下:
result.show(false)
+---+---+---+---+---+---+---+---+---+------------------+-------+-------------------+--------------------+
|a1 |b1 |c1 |d1 |e1 |a2 |b2 |c2 |d2 |Diff_a1 |Diff_b1|Diff_c1 |Diff_d1 |
+---+---+---+---+---+---+---+---+---+------------------+-------+-------------------+--------------------+
|24 |74 |74 |21 |66 |65 |100|27 |19 |0.6307692307692307|0.26 |-1.7407407407407407|-0.10526315789473684|
+---+---+---+---+---+---+---+---+---+------------------+-------+-------------------+--------------------+