尝试在 TensorBoard 上记录 CNN TensorFlow 的准确性
Trying to log accuracy of CNN TensorFlow on TensorBoard
我修改了用于图像分类的 CNN 张量流模型,以包含更多数量的卷积层。它工作正常。我想使用 TensorBoard 每 50 步记录一次模型的准确性。我一直在尝试添加 FileWriter 但没有运气。你能帮我看看我该怎么做吗?
谢谢
这是我的代码:
"""Convolutional Neural Network Estimator for MNIST, built with tf.layers."""
import numpy as np
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.INFO)
def cnn_model_fn(features, labels, mode):
"""Model function for CNN."""
input_layer = tf.reshape(features["x"], [-1, 28, 28, 1])
# Convolutional Layer #1
conv1 = tf.layers.conv2d(...)
# Pooling Layer #1
pool1 = tf.layers.max_pooling2d(...)
# Flatten tensor into a batch of vectors
pool2_flat = tf.reshape(...)
# Dense Layer
dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)
# Add dropout operation; 0.6 probability that element will be kept
dropout = tf.layers.dropout(
inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN)
# Logits layer
logits = tf.layers.dense(inputs=dropout, units=10)
predictions = {
# Generate predictions (for PREDICT and EVAL mode)
"classes": tf.argmax(input=logits, axis=1),
# Add `softmax_tensor` to the graph. It is used for PREDICT and by the
# `logging_hook`.
"probabilities": tf.nn.softmax(logits, name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate Loss (for both TRAIN and EVAL modes)
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
# Configure the Training Op (for TRAIN mode)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
# Add evaluation metrics (for EVAL mode)
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(
labels=labels, predictions=predictions["classes"])}
return tf.estimator.EstimatorSpec(
mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
def main(unused_argv):
# Load training and eval data
.
.
.
# Create the Estimator
mnist_classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir="/tmp/mnist_convnet_model")
# Set up logging for predictions
# Log the values in the "Softmax" tensor with label "probabilities"
tensors_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=50)
# Train the model
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": train_data},
y=train_labels,
batch_size=100,
num_epochs=None,
shuffle=True)
mnist_classifier.train(
input_fn=train_input_fn,
steps=2000,
hooks=[logging_hook])
# Evaluate the model and print results
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": eval_data},
y=eval_labels,
num_epochs=1,
shuffle=False)
eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
print(eval_results)
if __name__ == "__main__":
tf.app.run()
对于 tf.estimatorEstimator
的训练,您实际上不需要使用 FileWriter 编写摘要。它将合并所有摘要并每隔几步保存一次。默认情况下,它是每 100 步。要记录训练期间的准确性,您只需像这样为您的 TRAIN 模式定义摘要操作:
accuracy = tf.metrics.accuracy(
labels=labels, predictions=predictions["classes"])
tf.summary.scalar('accuracy', accuracy[1])
如果您想每 50 次执行一次,则需要在估算器实例化期间通过传递 config
来更改默认行为,如下所示:
mnist_classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir="/tmp/mnist_convnet_model",
config=tf.estimator.RunConfig(save_summary_steps=50))
您现在应该能够使用 TensorBoard 每 50 步查看模型的准确性。
我修改了用于图像分类的 CNN 张量流模型,以包含更多数量的卷积层。它工作正常。我想使用 TensorBoard 每 50 步记录一次模型的准确性。我一直在尝试添加 FileWriter 但没有运气。你能帮我看看我该怎么做吗?
谢谢 这是我的代码:
"""Convolutional Neural Network Estimator for MNIST, built with tf.layers."""
import numpy as np
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.INFO)
def cnn_model_fn(features, labels, mode):
"""Model function for CNN."""
input_layer = tf.reshape(features["x"], [-1, 28, 28, 1])
# Convolutional Layer #1
conv1 = tf.layers.conv2d(...)
# Pooling Layer #1
pool1 = tf.layers.max_pooling2d(...)
# Flatten tensor into a batch of vectors
pool2_flat = tf.reshape(...)
# Dense Layer
dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)
# Add dropout operation; 0.6 probability that element will be kept
dropout = tf.layers.dropout(
inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN)
# Logits layer
logits = tf.layers.dense(inputs=dropout, units=10)
predictions = {
# Generate predictions (for PREDICT and EVAL mode)
"classes": tf.argmax(input=logits, axis=1),
# Add `softmax_tensor` to the graph. It is used for PREDICT and by the
# `logging_hook`.
"probabilities": tf.nn.softmax(logits, name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate Loss (for both TRAIN and EVAL modes)
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
# Configure the Training Op (for TRAIN mode)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
# Add evaluation metrics (for EVAL mode)
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(
labels=labels, predictions=predictions["classes"])}
return tf.estimator.EstimatorSpec(
mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
def main(unused_argv):
# Load training and eval data
.
.
.
# Create the Estimator
mnist_classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir="/tmp/mnist_convnet_model")
# Set up logging for predictions
# Log the values in the "Softmax" tensor with label "probabilities"
tensors_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=50)
# Train the model
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": train_data},
y=train_labels,
batch_size=100,
num_epochs=None,
shuffle=True)
mnist_classifier.train(
input_fn=train_input_fn,
steps=2000,
hooks=[logging_hook])
# Evaluate the model and print results
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": eval_data},
y=eval_labels,
num_epochs=1,
shuffle=False)
eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
print(eval_results)
if __name__ == "__main__":
tf.app.run()
对于 tf.estimatorEstimator
的训练,您实际上不需要使用 FileWriter 编写摘要。它将合并所有摘要并每隔几步保存一次。默认情况下,它是每 100 步。要记录训练期间的准确性,您只需像这样为您的 TRAIN 模式定义摘要操作:
accuracy = tf.metrics.accuracy(
labels=labels, predictions=predictions["classes"])
tf.summary.scalar('accuracy', accuracy[1])
如果您想每 50 次执行一次,则需要在估算器实例化期间通过传递 config
来更改默认行为,如下所示:
mnist_classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir="/tmp/mnist_convnet_model",
config=tf.estimator.RunConfig(save_summary_steps=50))
您现在应该能够使用 TensorBoard 每 50 步查看模型的准确性。