在 spark scala 中使用 window 函数删除重复记录

Dropping duplicate records based using window function in spark scala

或者只是为了让这个简单的理解 我有一个数据框。

DataPartition   TimeStamp   OrganizationID  SourceID    AuditorID   AuditorEnumerationId    AuditorOpinionCode  AuditorOpinionId    IsPlayingAuditorRole    IsPlayingCSRAuditorRole IsPlayingTaxAdvisorRole FFAction|!| AuditorOpinionOnInternalControlCode AuditorOpinionOnGoingConcernCode    AuditorOpinionOnInternalControlsId  AuditorOpinionOnGoingConcernId  rank
Japan   2018-05-03T09:52:48+00:00   4295876589  194 null    null    null    null    null    null    null    O|!|    null    null    null    null    1
Japan   2018-05-03T09:52:48+00:00   4295876589  194 2719    3023331 AOP 3010542 true    false   true    O|!|    null    null    null    null    1
Japan   2018-05-03T09:52:48+00:00   4295876589  195 16157   1002485247  UWE 3010547 true    false   false   O|!|    null    null    null    null    1
Japan   2018-05-03T07:36:47+00:00   4295876589  196 3252    3024053 ONC 3020538 true    false   true    O|!|    null    null    null    null    1
Japan   2018-05-03T07:36:47+00:00   4295876589  195 5937    3026578 NOP 3010543 true    false   true    O|!|    null    null    null    null    1
Japan   2018-05-02T10:37:50+00:00   4295876589  156 null    null    null    null    null    null    null    O|!|    null    null    null    null    1
Japan   2018-05-02T10:37:50+00:00   4295876589  157 null    null    null    null    null    null    null    O|!|    null    null    null    null    1
Japan   2018-05-02T10:37:56+00:00   4295876589  193 null    null    null    null    null    null    null    O|!|    null    null    null    null    1
Japan   2018-05-03T08:10:19+00:00   4295876589  196 null    null    null    null    null    null    null    D|!|    null    null    null    null    1
Japan   2018-05-03T09:52:48+00:00   4295876589  195 null    null    null    null    null    null    null    O|!|    null    null    null    null    1

现在我需要选择具有 Rank =1 和 AuditorID!=null 的列,但 AuditorID =!=null 将仅适用于 FFAction|!|="O".

在那种情况下,我的输出数据框应该如下所示

DataPartition   TimeStamp   OrganizationID  SourceID    AuditorID   AuditorEnumerationId    AuditorOpinionCode  AuditorOpinionId    IsPlayingAuditorRole    IsPlayingCSRAuditorRole IsPlayingTaxAdvisorRole FFAction|!| AuditorOpinionOnInternalControlCode AuditorOpinionOnGoingConcernCode    AuditorOpinionOnInternalControlsId  AuditorOpinionOnGoingConcernId  rank

Japan   2018-05-03T09:52:48+00:00   4295876589  194 2719    3023331 AOP 3010542 true    false   true    O|!|    null    null    null    null    1
Japan   2018-05-03T09:52:48+00:00   4295876589  195 16157   1002485247  UWE 3010547 true    false   false   O|!|    null    null    null    null    1
Japan   2018-05-03T07:36:47+00:00   4295876589  196 3252    3024053 ONC 3020538 true    false   true    O|!|    null    null    null    null    1
Japan   2018-05-03T07:36:47+00:00   4295876589  195 5937    3026578 NOP 3010543 true    false   true    O|!|    null    null    null    null    1
Japan   2018-05-02T10:37:56+00:00   4295876589  193 null    null    null    null    null    null    null    I|!|    null    null    null    null    1
Japan   2018-05-03T08:10:19+00:00   4295876589  196 null    null    null    null    null    null    null    D|!|    null    null    null    null    1

这是我的代码

import org.apache.spark.sql.expressions._
    val windowSpec = Window.partitionBy("OrganizationID", "SourceID", "AuditorID").orderBy(unix_timestamp($"TimeStamp", "yyyy-MM-dd'T'HH:mm:ss").cast("timestamp").desc)
    val latestForEachKey1 = finaldf.withColumn("rank", row_number().over(windowSpec))
    .filter($"rank" === 1 && $"AuditorID" =!= "null")

场景 2 ...

这是我的数据框

uniqueFundamentalSet    PeriodId    SourceId    StatementTypeCode   StatementCurrencyId UpdateReason_updateReasonId UpdateReasonComment UpdateReasonComment_languageId  UpdateReasonEnumerationId   FFAction|!| DataPartition   PartitionYear   TimeStamp
192730230775    297 182 INC 500186  6   UpdateReasonToDelete    505074  3019685 I|!|    Japan   2017    2018-05-10T09:57:29+00:00
192730230775    297 182 INC 500186  6   UpdateReasonToDelete    505074  3019685 I|!|    Japan   2017    2018-05-10T10:00:40+00:00
192730230775    297 182 INC 500186  null    null    null    null    O|!|    Japan   2017    2018-05-10T10:11:15+00:00
192730230775    310 182 INC 500186  null    null    null    null    O|!|    Japan   2018    2018-05-10T08:30:53+00:00

当我在答案中应用建议的代码时,我的输出低于

val windowSpec = Window.partitionBy("uniqueFundamentalSet", "PeriodId", "SourceId", "StatementTypeCode", "StatementCurrencyId", "UpdateReason_updateReasonId").orderBy(unix_timestamp($"TimeStamp", "yyyy-MM-dd'T'HH:mm:ss").cast("timestamp").desc)
    val latestForEachKey1 = tempReorder.withColumn("rank", row_number().over(windowSpec))
      .filter($"rank" === 1 && (($"UpdateReason_updateReasonId" =!= "null" && $"FFAction|!|" === "O|!|") || $"FFAction|!|" =!= "O|!|")).drop("rank")

192730230775    297 182 INC 500186  6   UpdateReasonToDelete    505074  3019685 I|!|    Japan   2017    2018-05-10T10:00:40+00:00

但我的预期输出是这样的。

192730230775    297 182 INC 500186  null    null    null    null    O|!|    Japan   2017    2018-05-10T10:11:15+00:00

您可以使用 rownum udf 删除重复项并检查 rownum =1 并且 authorid 不为空

这是适合您的工作代码

import org.apache.spark.sql.expressions._
val windowSpec = Window.partitionBy("OrganizationID", "SourceID", "AuditorID").orderBy(unix_timestamp($"TimeStamp", "yyyy-MM-dd'T'HH:mm:ss").cast("timestamp").desc)
val latestForEachKey1 = finaldf.withColumn("rank", row_number().over(windowSpec))
  .filter($"rank" === 1 && (($"AuditorID" =!= "null" && $"FFAction|!|" === "O|!|") || $"FFAction|!|" =!= "O|!|"))

哪个应该给你

+-------------+-------------------------+--------------+--------+---------+--------------------+------------------+----------------+--------------------+-----------------------+-----------------------+-----------+-----------------------------------+--------------------------------+----------------------------------+------------------------------+----+
|DataPartition|TimeStamp                |OrganizationID|SourceID|AuditorID|AuditorEnumerationId|AuditorOpinionCode|AuditorOpinionId|IsPlayingAuditorRole|IsPlayingCSRAuditorRole|IsPlayingTaxAdvisorRole|FFAction|!||AuditorOpinionOnInternalControlCode|AuditorOpinionOnGoingConcernCode|AuditorOpinionOnInternalControlsId|AuditorOpinionOnGoingConcernId|rank|
+-------------+-------------------------+--------------+--------+---------+--------------------+------------------+----------------+--------------------+-----------------------+-----------------------+-----------+-----------------------------------+--------------------------------+----------------------------------+------------------------------+----+
|Japan        |2018-05-03T09:52:48+00:00|4295876589    |194     |2719     |3023331             |AOP               |3010542         |true                |false                  |true                   |O|!|       |null                               |null                            |null                              |null                          |1   |
|Japan        |2018-05-03T09:52:48+00:00|4295876589    |195     |16157    |1002485247          |UWE               |3010547         |true                |false                  |false                  |O|!|       |null                               |null                            |null                              |null                          |1   |
|Japan        |2018-05-03T07:36:47+00:00|4295876589    |196     |3252     |3024053             |ONC               |3020538         |true                |false                  |true                   |O|!|       |null                               |null                            |null                              |null                          |1   |
|Japan        |2018-05-03T07:36:47+00:00|4295876589    |195     |5937     |3026578             |NOP               |3010543         |true                |false                  |true                   |O|!|       |null                               |null                            |null                              |null                          |1   |
|Japan        |2018-05-03T08:10:19+00:00|4295876589    |196     |null     |null                |null              |null            |null                |null                   |null                   |D|!|       |null                               |null                            |null                              |null                          |1   |
+-------------+-------------------------+--------------+--------+---------+--------------------+------------------+----------------+--------------------+-----------------------+-----------------------+-----------+-----------------------------------+--------------------------------+----------------------------------+------------------------------+----+

注意:sourceID 为 193 的记录有 o|!|和 null 所以它不应该在输出中