matplotlib 条形图中极限处的误差线

error bars at the limits in matplotlib barchart

我正在尝试让误差线显示在置信区间的限制处,而不是在中心。

我要的是这个:

但我得到的是:

为了绘制条形图,我使用了这个:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

np.random.seed(12345)

df = pd.DataFrame([np.random.normal(32000,200000,3650), 
                   np.random.normal(43000,100000,3650), 
                   np.random.normal(43500,140000,3650), 
                   np.random.normal(48000,70000,3650)], 
                  index=[1992,1993,1994,1995])
df1 = df.T
df1.columns = ['1992', '1993','1994','1995']
a = df1.describe()
means = a.loc['mean'].values.tolist()
stdevs = a.loc['std'].values.tolist()
counts = a.loc['count'].values.tolist()
index = np.arange(len(df1.columns))

CI = []
for i in range(len(means)):
    CIval = 1.96*stdevs[i]/(counts[i]**(0.5))
    CI.append(CIval)

#print(means, CI)

plt.figure()
fig, ax = plt.subplots(figsize=(10,10))
ax.set_xticks(index)
ax.set_xticklabels(df1.columns)

plt.bar(index, means, xerr = 0.1, yerr=CI)
plt.tight_layout()
plt.show()

错误栏显示符合预期。您为 x 错误设置了 0.1 值,但是在您的预期结果图像中,没有 x 错误栏,因此我们可以将其删除。其次,我们可以增加错误栏的 capsize,以便在对 plt.bar():

的调用中使用 capsize= 使它们实际可见
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

np.random.seed(12345)

df = pd.DataFrame([np.random.normal(32000,200000,3650),
                   np.random.normal(43000,100000,3650),
                   np.random.normal(43500,140000,3650),
                   np.random.normal(48000,70000,3650)],
                  index=[1992,1993,1994,1995])
df1 = df.T
df1.columns = ['1992', '1993','1994','1995']
a = df1.describe()
means = a.loc['mean'].values.tolist()
stdevs = a.loc['std'].values.tolist()
counts = a.loc['count'].values.tolist()
index = np.arange(len(df1.columns))

CI = []
for i in range(len(means)):
    CIval = 1.96*stdevs[i]/(counts[i]**(0.5))
    CI.append(CIval)

fig, ax = plt.subplots(figsize=(10,10))
ax.set_xticks(index)
ax.set_xticklabels(df1.columns)

plt.bar(index, means, yerr=CI, capsize=10)
plt.tight_layout()
plt.show()