Keras 连接的卷积层:每个卷积层所需的数据格式
Keras Connected Convolutional Layers: Data Format Needed on Every Conv Layer
在 Keras 中使用连续的 Conv2D
层,我是否需要在每一层上设置 data_format
,还是仅在第一层上设置?我的数据采用 NCHW(频道优先)格式。
为了提供一些上下文,我有一个 Keras 网络,它由多个连续连接的 Conv2D
层组成。我的图像是:
- 灰度;
- 84x84 像素;
- 堆叠 4 个,以便每个样本都有速度指示(即一个样本由 4 个序列图像组成,我训练这些样本的批次)。
换句话说,每个样本的形状都是(4, 84, 84)
。这是我的模型,它是一个 Deep-q 网络实现:
import numpy as np
import tensorflow as tf
'''
' Huber loss: https://en.wikipedia.org/wiki/Huber_loss
'''
def huber_loss(y_true, y_pred):
error = y_true - y_pred
cond = tf.keras.backend.abs(error) < 1.0
squared_loss = 0.5 * tf.keras.backend.square(error)
linear_loss = tf.keras.backend.abs(error) - 0.5
return tf.where(cond, squared_loss, linear_loss)
'''
' Importance Sampling weighted huber loss.
'''
def huber_loss_mean_weighted(y_true, y_pred, is_weights):
error = huber_loss(y_true, y_pred)
return tf.keras.backend.mean(error * is_weights)
# The observation input.
in_obs = tf.keras.layers.Input(shape=(4, 84, 84))
# The importance sampling weights are used with the custom loss function,
# and correct for the non-uniform distribution of the samples.
in_is_weights = tf.keras.layers.Input(shape=(1,))
# Expectations when training (the output is qualities for actions).
in_actual = tf.keras.layers.Input(shape=(4,))
# Normalize the observation to the range of [0, 1].
norm = tf.keras.layers.Lambda(lambda x: x / 255.0)(in_obs)
# Convolutional layers per the Nature paper on DQN.
conv1 = tf.keras.layers.Conv2D(filters=32, kernel_size=8, strides=4,
activation="relu", data_format="channels_first")(norm)
conv2 = tf.keras.layers.Conv2D(filters=64, kernel_size=4, strides=2,
activation="relu", data_format="channels_first")(conv1)
conv3 = tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=1,
activation="relu", data_format="channels_first")(conv2)
# Flatten, and move to the fully-connected part of the network.
flatten = tf.keras.layers.Flatten()(conv3)
dense1 = tf.keras.layers.Dense(512, activation="relu")(flatten)
# Output prediction.
out_pred = tf.keras.layers.Dense(4, activation="linear")(dense1)
# Using Adam optimizer, RMSProp's successor.
opt = tf.keras.optimizers.Adam(lr=5e-5, decay=0.0)
# This network is used for training.
train_network = tf.keras.models.Model(
inputs=[in_obs, in_actual, in_is_weights],
outputs=out_pred)
# The custom loss, which is Huber Loss weighted by IS weights.
train_network.add_loss(
huber_loss_mean_weighted(out_pred, in_actual, in_is_weights))
train_network.compile(optimizer=opt, loss=None)
在此先感谢您的帮助。
你在每一层都需要它,或者你可以在你的keras配置文件中设置它:
- Linux:
~/.keras/keras.json
- Windows:
C:\users\<yourusername>\.keras\keras.json
但老实说,您最好从数据中交换轴,因为其他 keras 函数往往总是在最后一个轴上工作。因此,在最后一个轴上设置通道可能会为您节省很多额外的工作。
要更改您的数据:
np.moveaxis(data,1,-1)
在 Keras 中使用连续的 Conv2D
层,我是否需要在每一层上设置 data_format
,还是仅在第一层上设置?我的数据采用 NCHW(频道优先)格式。
为了提供一些上下文,我有一个 Keras 网络,它由多个连续连接的 Conv2D
层组成。我的图像是:
- 灰度;
- 84x84 像素;
- 堆叠 4 个,以便每个样本都有速度指示(即一个样本由 4 个序列图像组成,我训练这些样本的批次)。
换句话说,每个样本的形状都是(4, 84, 84)
。这是我的模型,它是一个 Deep-q 网络实现:
import numpy as np
import tensorflow as tf
'''
' Huber loss: https://en.wikipedia.org/wiki/Huber_loss
'''
def huber_loss(y_true, y_pred):
error = y_true - y_pred
cond = tf.keras.backend.abs(error) < 1.0
squared_loss = 0.5 * tf.keras.backend.square(error)
linear_loss = tf.keras.backend.abs(error) - 0.5
return tf.where(cond, squared_loss, linear_loss)
'''
' Importance Sampling weighted huber loss.
'''
def huber_loss_mean_weighted(y_true, y_pred, is_weights):
error = huber_loss(y_true, y_pred)
return tf.keras.backend.mean(error * is_weights)
# The observation input.
in_obs = tf.keras.layers.Input(shape=(4, 84, 84))
# The importance sampling weights are used with the custom loss function,
# and correct for the non-uniform distribution of the samples.
in_is_weights = tf.keras.layers.Input(shape=(1,))
# Expectations when training (the output is qualities for actions).
in_actual = tf.keras.layers.Input(shape=(4,))
# Normalize the observation to the range of [0, 1].
norm = tf.keras.layers.Lambda(lambda x: x / 255.0)(in_obs)
# Convolutional layers per the Nature paper on DQN.
conv1 = tf.keras.layers.Conv2D(filters=32, kernel_size=8, strides=4,
activation="relu", data_format="channels_first")(norm)
conv2 = tf.keras.layers.Conv2D(filters=64, kernel_size=4, strides=2,
activation="relu", data_format="channels_first")(conv1)
conv3 = tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=1,
activation="relu", data_format="channels_first")(conv2)
# Flatten, and move to the fully-connected part of the network.
flatten = tf.keras.layers.Flatten()(conv3)
dense1 = tf.keras.layers.Dense(512, activation="relu")(flatten)
# Output prediction.
out_pred = tf.keras.layers.Dense(4, activation="linear")(dense1)
# Using Adam optimizer, RMSProp's successor.
opt = tf.keras.optimizers.Adam(lr=5e-5, decay=0.0)
# This network is used for training.
train_network = tf.keras.models.Model(
inputs=[in_obs, in_actual, in_is_weights],
outputs=out_pred)
# The custom loss, which is Huber Loss weighted by IS weights.
train_network.add_loss(
huber_loss_mean_weighted(out_pred, in_actual, in_is_weights))
train_network.compile(optimizer=opt, loss=None)
在此先感谢您的帮助。
你在每一层都需要它,或者你可以在你的keras配置文件中设置它:
- Linux:
~/.keras/keras.json
- Windows:
C:\users\<yourusername>\.keras\keras.json
但老实说,您最好从数据中交换轴,因为其他 keras 函数往往总是在最后一个轴上工作。因此,在最后一个轴上设置通道可能会为您节省很多额外的工作。
要更改您的数据:
np.moveaxis(data,1,-1)