data.table R 中的按行模式

Row Wise Mode in data.table R

我正在尝试找到一种有效的方法来在 data.table

中的列子集上获取行模式
#Sample data    
a <- data.frame( 
        id=letters[], 
        dattyp1 = sample( 1:2, 26, replace=T) , 
        dattyp2 = sample( 1:2, 26, replace=T) , 
        dattyp3 = sample( 1:2, 26, replace=T) ,
        dattyp4 = sample( 1:2, 26, replace=T) , 
        dattyp5 = sample( 1:2, 26, replace=T) , 
        dattyp6 = sample( 1:2, 26, replace=T)
        )

    library(modeest)
    library(data.table)

我从: 知道我可以做到这一点:

Mode <- function(x) {
     ux <- unique(x)
          ux[which.max(tabulate(match(x, ux)))]
    }   

apply(a[ ,paste0("dattyp",1:6)], 1, Mode)

但这真的很慢(超过我的数百万条记录)。我在想一定有一种方法可以用 .SDcols 来做到这一点——但这确实是按列模式而不是按行模式。

a<- data.table( a )
    a[ , lapply(.SD , mfv ), .SDcols=c(paste0("dattyp",1:6) ) ]

你可以试试这个——虽然我不确定它会快多少。注意,我正在获取 mfv 返回的第一个数字。

library(modeest)
library(data.table)

a <- data.frame( 
  id=letters[], 
  dattyp1 = sample( 1:2, 26, replace=T) , 
  dattyp2 = sample( 1:2, 26, replace=T) , 
  dattyp3 = sample( 1:2, 26, replace=T) ,
  dattyp4 = sample( 1:2, 26, replace=T) , 
  dattyp5 = sample( 1:2, 26, replace=T) , 
  dattyp6 = sample( 1:2, 26, replace=T)
)


a<- data.table( a )

a[ , Mode:=mfv(c(dattyp1,dattyp2,dattyp3,dattyp4,dattyp5,dattyp6))[1],by=id ]

datatable 可能会更快。 申请:

microbenchmark(apply={
+   apply(a[ ,paste0("dattyp",1:6)], 1, Mode)
+ })
Unit: microseconds
  expr     min      lq     mean  median      uq      max neval
 apply 574.025 591.803 1056.807 624.988 704.396 39236.79   100

数据表来自:

microbenchmark({
+   a[ , Mode:=mfv(c(dattyp1,dattyp2,dattyp3,dattyp4,dattyp5,dattyp6))[1],by=id ]
+ })
Unit: milliseconds
                                                                                                       expr     min       lq
 {     a[, `:=`(Mode, mfv(c(dattyp1, dattyp2, dattyp3, dattyp4,          dattyp5, dattyp6))[1]), by = id] } 2.44109 2.748053
     mean   median       uq      max neval
 3.049809 2.898769 3.139559 6.398032   100

我认为通过 最快的方法仍然是转换为关系(即 long)格式并聚合,然后在 reldtMtd 函数中找到最大值,如下所示。不知道用Rcpp会不会更快

数据:

library(data.table)
M <- 1e6
popn <- 2
set.seed(0L)
a <- data.frame( 
    id=1:M, 
    dattyp1 = sample(popn, M, replace=TRUE), 
    dattyp2 = sample(popn, M, replace=TRUE), 
    dattyp3 = sample(popn, M, replace=TRUE),
    dattyp4 = sample(popn, M, replace=TRUE), 
    dattyp5 = sample(popn, M, replace=TRUE), 
    dattyp6 = sample(popn, M, replace=TRUE)
)    
setDT(a)

方法:

reldtMtd <- function() {
    melt(a, id.vars="id")[, 
        .N, by=.(id, value)][,
            value[which.max(N)], by=.(id)] 
}

#from 
Mode <- compiler::cmpfun(function(x) {   
    ux <- unique(x)
    ux[which.max(tabulate(match(x, ux)))]
})
Mode2 <- compiler::cmpfun(function(x) names(which.max(table(x))))
matA <- as.matrix(a[, -1L])

baseMtd1 <- function() apply(matA, 1, Mode)
baseMtd2 <- function() apply(matA, 1, Mode2)

library(microbenchmark)
microbenchmark(reldtMtd(), baseMtd1(), baseMtd2(), times=3L)

时间安排:

Unit: seconds
       expr        min         lq       mean     median         uq       max neval
 reldtMtd()   1.882783   1.947515   2.031767   2.012248   2.106259   2.20027     3
 baseMtd1()  15.618716  15.675314  15.809277  15.731913  15.904557  16.07720     3
 baseMtd2() 160.837513 161.692634 162.455048 162.547755 163.263816 163.97988     3