根据条件连接行中的值

concatenating values from rows in based on criteria

我有一个数据框 df(请参阅下面的代码),其中包含将近 100,000 行,显示了我的程序的联系人列表。该列表有一列显示联系人关联的程序 program 和组织 O_ID,还有一列显示联系人在程序中的角色。只要联系人在多个程序中或在程序中具有多个角色,就会为该联系人创建另一行,其中程序和联系人角色字段值发生变化。

First   Last    C_ID    OrgName O_ID Program    Role
John    Smith   10045   Acme    901 Buildings   Primary
John    Smith   10045   Acme    901 Buildings   Communications
John    Smith   10045   Acme    901 Homes       Primary
Teddy   Bush    10046   Acme    901 Buildings   Primary
Teddy   Bush    10046   Acme    901 Buildings   Signatory
Jess    Clinton 10050   Consult 904 Homes       Signatory
Jess    Clinton 10050   Consult 904 Homes       Primary
Jess    Clinton 10050   Consult 904 Homes       Communications

出于演示目的,我尽量减少行数。具体来说,如果联系人在同一个组织和同一个程序中,我只希望联系人出现在一行中(目前是几行)并将联系人角色组合成一个字符串。

我试过这段代码,它部分有效:ddply(df,.(df$C_ID, df$Program, df$O_ID), paste, sep=",")

结果如下:

df$C_ID df$Program df$O_ID                        V1                                 V2
1       10045      Buildings         901         c("John", "John")                c("Smith", "Smith")
2       10045          Homes         901                      John                              Smith
3       10046      Buildings         901       c("Teddy", "Teddy")                  c("Bush", "Bush")
4       10050          Homes         904 c("Jess", "Jess", "Jess") c("Clinton", "Clinton", "Clinton")
                      V3                                 V4               V5                           V6
1        c(10045, 10045)                  c("Acme", "Acme")      c(901, 901)  c("Buildings", "Buildings")
2                  10045                               Acme              901                        Homes
3        c(10046, 10046)                  c("Acme", "Acme")      c(901, 901)  c("Buildings", "Buildings")
4 c(10050, 10050, 10050) c("Consult", "Consult", "Consult") c(904, 904, 904) c("Homes", "Homes", "Homes")
                                           V7
1              c("Primary", "Communications")
2                                     Primary
3                   c("Primary", "Signatory")
4 c("Signatory", "Primary", "Communications")

问题是

1) 重新排列了列(注意我的实际数据集中有更多的列)并且列名消失了

2) 唯一具有更改值的列应该在 Role 列中。但是,即使合并的值相同,结果也会合并大多数列的值。例如,在结果列 V1(名字列)中,returns c("John", "John")。它应该只是读作 "John"。唯一应该具有不同值的列是列 V7 c("Primary", "Communications")

df<-structure(list(First = c("John", "John", "John", "Teddy", "Teddy", 
"Jess", "Jess", "Jess"), Last = c("Smith", "Smith", "Smith", 
"Bush", "Bush", "Clinton", "Clinton", "Clinton"), C_ID = c(10045L, 
10045L, 10045L, 10046L, 10046L, 10050L, 10050L, 10050L), OrgName = c("Acme", 
"Acme", "Acme", "Acme", "Acme", "Consult", "Consult", "Consult"
), O_ID = c(901L, 901L, 901L, 901L, 901L, 904L, 904L, 904L), 
    Program = c("Buildings", "Buildings", "Homes", "Buildings", 
    "Buildings", "Homes", "Homes", "Homes"), Role = c("Primary", 
    "Communications", "Primary", "Primary", "Signatory", "Signatory", 
    "Primary", "Communications")), .Names = c("First", "Last", 
"C_ID", "OrgName", "O_ID", "Program", "Role"), class = "data.frame", row.names = c(NA, 
-8L))

您在 paste 中需要的是 collapse = ", ",而不是 sep。使用 collapse 从所有输入中创建一个字符串。为此,我对所有标识列(名称、组织、程序等)进行分组,然后折叠 summarise.

中的角色
library(tidyverse)

df %>%
  group_by(First, Last, C_ID, OrgName, O_ID, Program) %>%
  summarise(roles_mult = paste(Role, collapse = ", "))
#> # A tibble: 4 x 7
#> # Groups:   First, Last, C_ID, OrgName, O_ID [?]
#>   First Last     C_ID OrgName  O_ID Program   roles_mult                  
#>   <chr> <chr>   <int> <chr>   <int> <chr>     <chr>                       
#> 1 Jess  Clinton 10050 Consult   904 Homes     Signatory, Primary, Communi…
#> 2 John  Smith   10045 Acme      901 Buildings Primary, Communications     
#> 3 John  Smith   10045 Acme      901 Homes     Primary                     
#> 4 Teddy Bush    10046 Acme      901 Buildings Primary, Signatory

您也可以使用 dplyr 来完成。

> df %>% distinct(First, Last, .keep_all=T)
  First    Last  C_ID OrgName O_ID   Program      Role
1  John   Smith 10045    Acme  901 Buildings   Primary
2 Teddy    Bush 10046    Acme  901 Buildings   Primary
3  Jess Clinton 10050 Consult  904     Homes Signatory