了解暗网的 yolo.cfg 配置文件

Understanding darknet's yolo.cfg config files

我在网上搜索过,但发现这方面的信息很少,我不明白每个 variable/value 在 yolo 的 .cfg 文件中代表什么。所以我希望你们中的一些人能提供帮助,我不认为我是唯一遇到这个问题的人,所以如果有人知道 2 或 3 个变量,请 post 他们以便将来需要此类信息的人可能会找到它们。

我想知道的主要是:

这是我目前对一些变量的理解。虽然不一定正确:

[净]

  • batch:正向传播中使用了那么多图像+标签来计算梯度并通过反向传播更新权重。
  • 细分:批次被细分为这么多"blocks"。块的图像在gpu上并行运行。
  • 衰减:可能是一个术语,用于减少权重以避免具有大值。我猜是出于稳定性原因。
  • 频道:在这张图片中有更好的解释:

在左侧,我们有一个 4x4 像素的通道,重组层将尺寸缩小到一半,然后在不同通道中创建 4 个具有相邻像素的通道。

  • momentum:我猜新的梯度是由 momentum * previous_gradient + (1-动量) * gradient_of_current_batch。使渐变更稳定。
  • adam:使用 adam 优化器?虽然对我不起作用
  • burn_in:对于前x批次,慢慢增加学习率直到它的最终值(你的learning_rate参数值)。使用它来决定学习率,通过监控直到损失值减少(在它开始发散之前)。
  • policy=steps:使用下面的steps和scales参数在训练期间调整学习率
  • steps=500,1000: 在500和1000个batches后调整学习率
  • scales=0.1,0.2: 500后,LR乘以0.1,1000后再次乘以0.2
  • angle:通过旋转到这个角度(以度为单位)来增强图像

层数

  • filters:一层有多少个卷积核。
  • activation:激活函数,relu,leaky relu等。参见src/activations.h
  • stopbackward:只做反向传播直到这一层。将它放在第一个 yolo 层之前的最终卷积层中,以仅训练其后面的层,例如使用预训练权重时。
  • 运行dom:放入yolo层。如果设置为 1,则通过每隔几批将图像调整为不同大小来进行数据增强。用于概括对象大小。

很多事情或多或少都是不言自明的(尺寸、步幅、batch_normalize、max_batches、宽度、高度)。如果您有更多问题,请随时发表评论。

再次请记住,我对其中的许多内容并不是 100% 确定。

batch每批中选择的图像数量以减少损失

subdivisions 批量大小的划分到没有。并行处理的子批次

衰减 是一个学习参数,如期刊中指定的那样,使用 0.9 的动量和 0.0005 的衰减

momentum 是一个学习参数,如期刊中所指定,使用 0.9 的动量和 0.0005 的衰减

channels Channels指的是BGR图像的输入图像(3)的通道大小

filters 用于 CNN 算法的过滤器数量

activation CNN的激活函数:主要使用Leaky RELU函数(我在配置文件中看到的最多)

虽然这是一个很老的帮助请求,但对于未来寻求答案的用户来说, 你可以在原始 Yolo 项目最著名的分支中的 Wiki 页面上找到所有解释 https://github.com/AlexeyAB/darknet/wiki

特别是,仅复制和粘贴 here 中的 [net] 部分,如下所示:

[net]

  • batch=1 - number of samples (images, letters, ...) which will be precossed in one batch
  • subdivisions=1 - number of mini_batches in one batch, size mini_batch = batch/subdivisions, so GPU processes mini_batch samples at once, and the weights will be updated for batch samples (1 iteration processes batch images)
  • width=416 - network size (width), so every image will be resized to the network size during Training and Detection
  • height=416 - network size (height), so every image will be resized to the network size during Training and Detection
  • channels=3 - network size (channels), so every image will be converted to this number of channels during Training and Detection
  • inputs=256 - network size (inputs) is used for non-image data: letters, prices, any custom data

无论如何,你甚至应该尝试在亲戚 Github/issues part 中寻找一些你想知道的东西,即使是幼稚的,因为通常它已经被询问和回答了。

祝你好运。

关于cfg参数更完整的解释,复制自YOLO v4的作者https://github.com/AlexeyAB/darknet/wiki/CFG-Parameters-in-the-%5Bnet%5D-sectionhttps://github.com/AlexeyAB/darknet/wiki/CFG-Parameters-in-the-different-layers

下面只是文档的截图,更好的格式请参考上面的链接

CFG-Parameters in the [net] section:

[net] section
batch=1 - number of samples (images, letters, ...) which will be precossed in one batch

subdivisions=1 - number of mini_batches in one batch, size mini_batch = batch/subdivisions, so GPU processes mini_batch samples at once, and the weights will be updated for batch samples (1 iteration processes batch images)

width=416 - network size (width), so every image will be resized to the network size during Training and Detection

height=416 - network size (height), so every image will be resized to the network size during Training and Detection

channels=3 - network size (channels), so every image will be converted to this number of channels during Training and Detection

inputs=256 - network size (inputs) is used for non-image data: letters, prices, any custom data

max_chart_loss=20 - max value of Loss in the image chart.png

For training only

Contrastive loss:

contrastive=1 - use Supervised contrastive loss for training Classifier (should be used with [contrastive] layer)

unsupervised=1 - use Unsupervised contrastive loss for training Classifier on images without labels (should be used with contrastive=1 parameter and with [contrastive] layer)

Data augmentation:

angle=0 - randomly rotates images during training (classification only)

saturation = 1.5 - randomly changes saturation of images during training

exposure = 1.5 - randomly changes exposure (brightness) during training

hue=.1 - randomly changes hue (color) during training https://en.wikipedia.org/wiki/HSL_and_HSV

blur=1 - blur will be applied randomly in 50% of the time: if 1 - will be blured background except objects with blur_kernel=31, if >1 - will be blured whole image with blur_kernel=blur (only for detection and if OpenCV is used)

min_crop=224 - minimum size of randomly cropped image (classification only)

max_crop=448 - maximum size of randomly cropped image (classification only)

aspect=.75 - aspect ration can be changed during croping from 0.75 - to 1/0.75 (classification only)

letter_box=1 - keeps aspect ratio of loaded images during training (detection training only, but to use it during detection-inference - use flag -letter_box at the end of detection command)

cutmix=1 - use CutMix data augmentation (for Classifier only, not for Detector)

mosaic=1 - use Mosaic data augmentation (4 images in one)

mosaic_bound=1 - limits the size of objects when mosaic=1 is used (does not allow bounding boxes to leave the borders of their images when Mosaic-data-augmentation is used)

data augmentation in the last [yolo]-layer

jitter=0.3 - randomly changes size of image and its aspect ratio from x(1 - 2*jitter) to x(1 + 2*jitter)
random=1 - randomly resizes network size after each 10 batches (iterations) from /1.4 to x1.4 with keeping initial aspect ratio of network size
adversarial_lr=1.0 - Changes all detected objects to make it unlike themselves from neural network point of view. The neural network do an adversarial attack on itself

attention=1 - shows points of attention during training

gaussian_noise=1 - add gaussian noise

Optimizator:

momentum=0.9 - accumulation of movement, how much the history affects the further change of weights (optimizer)

decay=0.0005 - a weaker updating of the weights for typical features, it eliminates dysbalance in dataset (optimizer) http://cs231n.github.io/neural-networks-3/

learning_rate=0.001 - initial learning rate for training

burn_in=1000 - initial burn_in will be processed for the first 1000 iterations, current_learning rate = learning_rate * pow(iterations / burn_in, power) = 0.001 * pow(iterations/1000, 4) where is power=4 by default

max_batches = 500200 - the training will be processed for this number of iterations (batches)

policy=steps - policy for changing learning rate: constant (by default), sgdr, steps, step, sig, exp, poly, random (f.e., if policy=random - then current learning rate will be changed in this way = learning_rate * pow(rand_uniform(0,1), power))

power=4 - if policy=poly - the learning rate will be = learning_rate * pow(1 - current_iteration / max_batches, power)

sgdr_cycle=1000 - if policy=sgdr - the initial number of iterations in cosine-cycle

sgdr_mult=2 - if policy=sgdr - multiplier for cosine-cycle https://towardsdatascience.com/https-medium-com-reina-wang-tw-stochastic-gradient-descent-with-restarts-5f511975163

steps=8000,9000,12000 - if policy=steps - at these numbers of iterations the learning rate will be multiplied by scales factor

scales=.1,.1,.1 - if policy=steps - f.e. if steps=8000,9000,12000, scales=.1,.1,.1 and the current iteration number is 10000 then current_learning_rate = learning_rate * scales[0] * scales[1] = 0.001 * 0.1 * 0.1 = 0.00001

label_smooth_eps=0.1 - use label smoothing for training Classifier

For training Recurrent networks:

Object Detection/Tracking on Video - if [conv-lstm] or [crnn] layers are used in additional to [connected] and [convolutional] layers

Text generation - if [lstm] or [rnn] layers are used in additional to [connected] layers

track=1 - if is set 1 then the training will be performed in Recurrents-tyle for image sequences

time_steps=16 - training will be performed for a random image sequence that contains 16 images from train.txt file

for [convolutional]-layers: mini_batch = time_steps*batch/subdivisions
for [conv_lstm]-recurrent-layers: mini_batch = batch/subdivisions and sequence=16
augment_speed=3 - if set 3 then can be used each 1st, 2nd or 3rd image randomly, i.e. can be used 16 images with indexes 0, 1, 2, ... 15 or 110, 113, 116, ... 155 from train.txt file

sequential_subdivisions=8 - lower value increases the sequence of images, so if time_steps=16 batch=16 sequential_subdivisions=8, then will be loaded time_steps*batch/sequential_subdivisions = 16*16/8 = 32 sequential images with the same data-augmentation, so the model will be trained for sequence of 32 video-frames

seq_scales=0.5, 0.5 - increasing sequence of images at some steps, i.e. the coefficients to which the original sequential_subdivisions value will be multiplied (and batch will be dividied, so the weights will be updated rarely) at correspond steps if is used policy=steps or policy=sgdr

CFG-Parameters in the different layers
Image processing [N x C x H x W]:

[convolutional] - convolutional layer

batch_normalize=1 - if 1 - will be used batch-normalization, if 0 will not (0 by default)

filters=64 - number of kernel-filters (1 by default)

size=3 - kernel_size of filter (1 by default)

groups = 32 - number of groups for grouped-convolutional (depth-wise) (1 by default)

stride=1 - stride (offset step) of kernel filter (1 by default)

padding=1 - size of padding (0 by default)

pad=1 - if 1 will be used padding = size/2, if 0 the will be used parameter padding= (0 by default)

dilation=1 - size of dilation (1 by default)

activation=leaky - activation function after convolution: logistic (by default), loggy, relu, elu, selu, relie, plse, hardtan, lhtan, linear, ramp, leaky, tanh, stair, relu6, swish, mish

[activation] - separate activation layer

activation=leaky - activation function: linear (by default), loggy, relu, elu, selu, relie, plse, hardtan, lhtan, linear, ramp, leaky, tanh, stair
[batchnorm] - separate Batch-normalization layer
[maxpool] - max-pooling layer (the maximum value)

size=2 - size of max-pooling kernel

stride=2 - stirde (offset step) of max-pooling kernel

[avgpool] - average pooling layer input W x H x C -> output 1 x 1 x C
[shortcut] - residual connection (ResNet)

from=-3,-5 - relative layer numbers, preforms element-wise adding of several layers: previous-layer and layers specified in from= parameter

weights_type=per_feature - will be used weights for shortcut y[i] = w1*layer1[i] + w2*layer2[i] ...

per_feature - 1 weights per layer/feature
per_channel - 1 weights per channel
none - weights will not be used (by default)
weights_normalization=softmax - will be used weights normalization

softmax - softmax normalization
relu - relu normalization
none - without weights normalization - unbound weights (by default)
activation=linear - activation function after shortcut/residual connection (linear by default)

[upsample] - upsample layer (increase W x H resolution of input by duplicating elements)

stride=2 - factor for increasing both Width and Height (new_w = w*stride, new_h = h*stride)
[scale_channels] - scales channels (SE: squeeze-and-excitation blocks) or (ASFF: adaptively spatial feature fusion) -it multiplies elements of one layer by elements of another layer

from=-3 - relative layer number, performs multiplication of all elements of channel N from layer -3, by one element of channel N from the previous layer -1 (i.e. for(int i=0; i < b*c*h*w; ++i) output[i] = from_layer[i] * previous_layer[i/(w*h)]; )

scale_wh=0 - SE-layer (previous layer 1x1xC), scale_wh=1 - ASFF-layer (previous layer WxHx1)

activation=linear - activation function after scale_channels-layer (linear by default)

[sam] - Spatial Attention Module (SAM) - it multiplies elements of one layer by elements of another layer

from=-3 - relative layer number (this and previous layers should be the same size WxHxC)
[reorg3d] - reorg layer (resize W x H x C)

stride=2 - if reverse=0 input will be resized to W/2 x H/2 x C4, if reverse=1thenW2 x H*2 x C/4`, (1 by default)

reverse=1 - if 0(by default) then decrease WxH, if1thenincrease WxH (0 by default)

[reorg] - OLD reorg layer from Yolo v2 - has incorrect logic (resize W x H x C) - depracated

stride=2 - if reverse=0 input will be resized to W/2 x H/2 x C4, if reverse=1thenW2 x H*2 x C/4`, (1 by default)

reverse=1 - if 0(by default) then decrease WxH, if1thenincrease WxH (0 by default)

[route] - concatenation layer, Concat for several input-layers, or Identity for one input-layer

layers = -1, 61 - layers that will be concatenated, output: W x H x C_layer_1 + C_layer_2
if index < 0, then it is relative layer number (-1 means previous layer)
if index >= 0, then it is absolute layer number
[yolo] - detection layer for Yolo v3 / v4

mask = 3,4,5 - indexes of anchors which are used in this [yolo]-layer

anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 - initial sizes if bounded_boxes that will be adjusted

num=9 - total number of anchors

classes=80 - number of classes of objects which can be detected

ignore_thresh = .7 - keeps duplicated detections if IoU(detect, truth) > ignore_thresh, which will be fused during NMS (is used for training only)

truth_thresh = 1 - adjusts duplicated detections if IoU(detect, truth) > truth_thresh, which will be fused during NMS (is used for training only)

jitter=.3 - randomly crops and resizes images with changing aspect ratio from x(1 - 2*jitter) to x(1 + 2*jitter) (data augmentation parameter is used only from the last layer)

random=1 - randomly resizes network for each 10 iterations from 1/1.4 to 1.4(data augmentation parameter is used only from the last layer)

resize=1.5 - randomly resizes image in range: 1/1.5 - 1.5x

max=200 - maximum number of objects per image during training

counters_per_class=100,10,1000 - number of objects per class in Training dataset to eliminate the imbalance

label_smooth_eps=0.1 - label smoothing

scale_x_y=1.05 - eliminate grid sensitivity

iou_thresh=0.2 - use many anchors per object if IoU(Obj, Anchor) > 0.2

iou_loss=mse - IoU-loss: mse, giou, diou, ciou

iou_normalizer=0.07 - normalizer for delta-IoU

cls_normalizer=1.0 - normalizer for delta-Objectness

max_delta=5 - limits delta for each entry

[crnn] - convolutional RNN-layer (recurrent)

batch_normalize=1 - if 1 - will be used batch-normalization, if 0 will not (0 by default)

size=1 - convolutional kernel_size of filter (1 by default)

pad=0 - if 1 will be used padding = size/2, if 0 the will be used parameter padding= (0 by default)

output = 1024 - number of kernel-filters in one output convolutional layer (1 by default)

hidden=1024 - number of kernel-filters in two (input and hidden) convolutional layers (1 by default)

activation=leaky - activation function for each of 3 convolutional-layers in the [crnn]-layer (logistic by default)

[conv_lstm] - convolutional LSTM-layer (recurrent)

batch_normalize=1 - if 1 - will be used batch-normalization, if 0 will not (0 by default)

size=3 - convolutional kernel_size of filter (1 by default)

padding=1 - convolutional size of padding (0 by default)

pad=1 - if 1 will be used padding = size/2, if 0 the will be used parameter padding= (by default)

stride=1 - convolutional stride (offset step) of kernel filter (1 by default)

dilation=1 - convolutional size of dilation (1 by default)

output=256 - number of kernel-filters in each of 8 or 11 convolutional layers (1 by default)

groups=4 - number of groups for grouped-convolutional (depth-wise) (1 by default)

state_constrain=512 - constrains LSTM-state values [-512; +512] after each inference (time_steps*32 by default)

peephole=0 - if 1 then will be used Peephole (additional 3 conv-layers), if 0 will not (1 by default)

bottleneck=0 - if 1 then will be used reduced optimal versionn of conv-lstm layer

activation=leaky - activation function for each of 8 or 11 convolutional-layers in the [conv_lstm]-layer (linear by default)

lstm_activation=tanh - activation for G (gate: g = tanh(wg + ug)) and C (memory cell: h = o * tanh(c))

Detailed-architecture-of-the-peephole-LSTM

Free-form data processing [Inputs]:

[connected] - fully connected layer
output=256 - number of outputs (1 by default), so number of connections is equal to inputs*outputs
activation=leaky - activation after layer (logistic by default)
[dropout] - dropout layer
probability=0.5 - dropout probability - what part of inputs will be zeroed (0.5 = 50% by default)

dropblock=1 - use as DropBlock

dropblock_size_abs=7 - size of DropBlock in pixels 7x7

[softmax] - SoftMax CE (cross entropy) layer - Categorical cross-entropy for multi-class classification
[contrastive] - Contrastive loss layer for Supervised and Unsupervised learning (should be set [net] contrastive=1 and optionally [net] unsupervised=1)

classes=1000 - number of classes

temperature=1.0 - temperature

[cost] - cost layer calculates (linear)Delta and (squared)Loss
type=sse - cost type: sse (L2), masked, smooth (smooth-L1) (SSE by default)
[rnn] - fully connected RNN-layer (recurrent)
batch_normalize=1 - if 1 - will be used batch-normalization, if 0 will not (0 by default)
output = 1024 - number of outputs in one connected layer (1 by default)
hidden=1024 - number of outputs in two (input and hidden) connected layers (1 by default)
activation=leaky - activation after layer (logistic by default)
[lstm] - fully connected LSTM-layer (recurrent)
batch_normalize=1 - if 1 - will be used batch-normalization, if 0 will not (0 by default)
output = 1024 - number of outputs in all connected layers (1 by default)
[gru] - fully connected GRU-layer (recurrent)
batch_normalize=1 - if 1 - will be used batch-normalization, if 0 will not (0 by default)
output = 1024 - number of outputs in all 

connected layers (1 by default)