获取先前的 window 值以处理延迟事件

Getting previous window value for processing late events

我正在寻找一种方法来设置窗口以允许迟到,并让我根据之前为会话计算的值计算值。

我的会话值总体上是一个唯一标识符,应该永远不会发生冲突,但从技术上讲,会话可以随时进入。在大多数会话中,大多数事件的处理时间超过 5 分钟,允许迟到 1 天应该可以满足任何迟到的事件。

  stream
    .keyBy { jsonEvent => jsonEvent.findValue("session").toString }
    .window(ProcessingTimeSessionWindows.withGap(Time.minutes(5)))
    .allowedLateness(Time.days(1))
    .process { new SessionProcessor }
    .addSink { new HttpSink }

对于每个会话,我都会找到一个字段的最大值,并检查一些事件是否没有发生(如果确实发生了,它们将使最大值字段为零)。我决定创建一个 ProcessWindowFunction 来执行此操作。

Class SessionProcessor extends ProcessWindowFunction[ObjectNode, (String, String, String, Long), String, TimeWindow] {

   override def process(key: String, context: Context, elements: Iterable[ObjectNode], out: Collector[(String, String, String, Long)]): Unit = {
      //Parse and calculate data
      maxValue = if(badEvent1) 0 else maxValue
      maxValue = if(badEvent2) 0 else maxValue          
      out.collect((string1,string2,string3, maxValue))
   }
}

这在允许延迟事件之前工作正常。当延迟事件通过时,maxValue 被重新计算并再次输出到 HttpSink。我正在寻找一种方法,以便我可以计算之前 maxValue 和后期 maxValue 的增量。

我正在寻找一种方法来确定:

  1. 如果对函数的调用来自延迟事件(我不想重复计算会话总数)
  2. 新的数据是什么,或者有没有办法存储之前的计算值。

如有任何帮助,我们将不胜感激。

编辑:用于 ValueState 的新代码

KafkaConsumer.scala

import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.connectors.kafka._
import org.apache.flink.streaming.util.serialization.JSONDeserializationSchema
import org.apache.flink.streaming.api.scala._
import com.fasterxml.jackson.databind.node.ObjectNode
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows
import org.apache.flink.streaming.api.windowing.time.Time


object KafkaConsumer {
   def main(args: Array[String]) {
      val env = StreamExecutionEnvironment.getExecutionEnvironment
      env.setStreamTimeCharacteristic(TimeCharacteristic.IngestionTime)
      val properties = getServerProperties
      val consumer = new FlinkKafkaConsumer010[ObjectNode]("test-topic", new JSONDeserializationSchema, properties)
      consumer.setStartFromLatest()
      val stream = env.addSource(consumer)

      stream
        .keyBy { jsonEvent => jsonEvent.findValue("data").findValue("query").findValue("session").toString }
        .window(TumblingProcessingTimeWindows.of(Time.seconds(5)))
        .allowedLateness(Time.days(1))
        .process {
          new SessionProcessor
        }
        .print
      env.execute("Kafka APN Consumer")
    }
  }

SessionProcessor.scala

import org.apache.flink.util.Collector
import com.fasterxml.jackson.databind.node.ObjectNode
import org.apache.flink.api.common.state.{ValueState, ValueStateDescriptor}
import org.apache.flink.streaming.api.scala.function.ProcessWindowFunction
import org.apache.flink.streaming.api.windowing.windows.TimeWindow

class SessionProcessor extends ProcessWindowFunction[ObjectNode, (String, String, String, Long), String, TimeWindow] {

  final val previousValue = new ValueStateDescriptor("previousValue", classOf[Long])

  override def process(key: String, context: Context, elements: Iterable[ObjectNode], out: Collector[(String, String, String, Long)]): Unit = {

    val previousVal: ValueState[Long] = context.windowState.getState(previousValue)
    val pVal: Long = previousVal.value match {
      case i: Long => i
    }
    var session = ""
    var user = ""
    var department = ""
    var lVal: Long = 0

    elements.foreach( value => {
      var jVal: String = "0"
      if (value.findValue("data").findValue("query").has("value")) {
        jVal = value.findValue("data").findValue("query").findValue("value").toString replaceAll("\"", "")
      }
      session = value.findValue("data").findValue("query").findValue("session").toString replaceAll("\"", "")
      user = value.findValue("data").findValue("query").findValue("user").toString replaceAll("\"", "")
      department = value.findValue("data").findValue("query").findValue("department").toString replaceAll("\"", "")
      lVal = if (jVal.toLong > lVal) jVal.toLong else lVal
    })

    val increaseTime = lVal - pVal
    previousVal.update(increaseTime)
    out.collect((session, user, department, increaseTime))
  }
}

这是一个执行类似操作的示例。希望它是合理的不言自明的,并且应该足够简单以适应您的需求。

这里的基本思想是您可以使用 context.windowState(),这是通过传递给 ProcessWindowFunction 的上下文提供的每个 window 状态。这个 windowState 实际上只对多次触发的 windows 有用,因为每个新的 window 实例都有一个新初始化的(和空的)windowState 存储。对于在所有 windows 之间共享的状态(但仍然是键控的),使用 context.globalState().

private static class DifferentialWindowFunction
  extends ProcessWindowFunction<Long, Tuple2<Long, Long>, String, TimeWindow> {

  private final static ValueStateDescriptor<Long> previousFiringState =
    new ValueStateDescriptor<>("previous-firing", LongSerializer.INSTANCE);

  private final static ReducingStateDescriptor<Long> firingCounterState =
    new ReducingStateDescriptor<>("firing-counter", new Sum(), LongSerializer.INSTANCE);

  @Override
  public void process(
      String key, 
      Context context, 
      Iterable<Long> values, 
      Collector<Tuple2<Long, Long>> out) {

    ValueState<Long> previousFiring = context.windowState().getState(previousFiringState);
    ReducingState<Long> firingCounter = context.windowState().getState(firingCounterState);

    Long output = Iterables.getOnlyElement(values);
    if (firingCounter.get() == null) {
      // first firing
      out.collect(Tuple2.of(0L, output));
    } else {
      // subsequent firing
      out.collect(Tuple2.of(firingCounter.get(), output - previousFiring.value()));    
    } 
    firingCounter.add(1L);
    previousFiring.update(output);
  }

  @Override
  public void clear(Context context) {
    ValueState<Long> previousFiring = context.windowState().getState(previousFiringState);
    ReducingState<Long> firingCounter = context.windowState().getState(firingCounterState);

    previousFiring.clear();
    firingCounter.clear();
  }
}