如何在 Matlab 中制作圆柱形 3D 等高线图?

How can I make a cylindrical 3D contour plot in Matlab?

我有一个轴对称流,在 r 和 z 方向上有 m x n 个网格点,我想在 3D 圆柱图中绘制大小为 mxn 的矩阵中存储的温度,如下面的 link 所示(我的声誉不够高,无法将其作为图片包含在内)。

我已经设法使用轮廓在 2D(r,z 平面)中绘制它,但我想添加 theta 平面以进行可视化。我该怎么做?

您可以通过多次调用 surface() 来实现自己的目标。 关键思想是:对于每个表面:(1) theta=theta1,(2) theta=theta2,(3) z=zmax,(4) z=0,(5) r=rmax,生成一个 3D 网格 (xx, yy,zz) 和该网格上的温度图。所以你要考虑如何构建每一个表面网格。
编辑:现在提供完整的代码。所有幻数和假数据都(几乎)放在代码的顶部,因此很容易将其转换为通用的 Matlab 函数。祝你好运!

% I have adjusted the range values to show the curved cylinder wall 
% display a variable temperature
r = 0:0.1:2.6; % you can also try r = 0:0.1:3.0
z = 0:0.1:10;  % you can also try z = 0:0.1:15;
[rr, zz] = meshgrid(r,z);

% fake temperature data
temp = 100 + (10* (3-rr).^0.6) .* (1-((zz - 7.5)/7.5).^6) ;

% visualize in 2D
figure(1);
clf;
imagesc(r,z,temp);
colorbar;

% set cut planes angles
theta1 = 0;
theta2 = pi*135/180;
nt = 40;  % angle resolution

figure(2);
clf;

xx1 = rr * cos(theta1);
yy1 = rr * sin(theta1);
h1 = surface(xx1,yy1,zz,temp,'EdgeColor', 'none');

xx2 = rr * cos(theta2);
yy2 = rr * sin(theta2);
h2 = surface(xx2,yy2,zz,temp,'EdgeColor', 'none');

% polar meshgrid for the top end-cap
t3 = linspace(theta1, (theta2 - 2*pi), nt);
[rr3, tt3] = meshgrid(r,t3);
xx3 = rr3 .* cos(tt3);
yy3 = rr3 .* sin(tt3);
zz3 = ones(size(rr3)) * max(z);
temp3 = zeros(size(rr3));
for k = 1:length(r)
    temp3(:,k) = temp(end,k);
end
h3 = surface(xx3,yy3,zz3,temp3,'EdgeColor', 'none');

% polar meshgrid for the bottom end-cap
zz4 = ones(size(rr3)) * min(z);
temp4 = zeros(size(rr3));
for k = 1:length(r)
    temp4(:,k) = temp(1,k);
end
h4 = surface(xx3,yy3,zz4,temp4,'EdgeColor', 'none');

% generate a curved meshgrid
[tt5, zz5] = meshgrid(t3,z);
xx5 = r(end) * cos(tt5); 
yy5 = r(end) * sin(tt5); 
temp5 = zeros(size(xx5));
for k = 1:length(z)
    temp5(k,:) = temp(k,end);
end
h5 = surface(xx5, yy5, zz5,temp5,'EdgeColor', 'none');

axis equal
colorbar
view(125,25);  % viewing angles