在 PyTorch 中实现 Luong 注意力
Implementing Luong Attention in PyTorch
我正在尝试自己在 PyTorch 中实现 Luong et al. 2015 中描述的注意力,但我无法让它发挥作用。下面是我的代码,我现在只对 "general" 注意力案例感兴趣。我想知道我是否遗漏了任何明显的错误。它运行,但似乎不学习。
class AttnDecoderRNN(nn.Module):
def __init__(self, hidden_size, output_size, dropout_p=0.1):
super(AttnDecoderRNN, self).__init__()
self.hidden_size = hidden_size
self.output_size = output_size
self.dropout_p = dropout_p
self.embedding = nn.Embedding(
num_embeddings=self.output_size,
embedding_dim=self.hidden_size
)
self.dropout = nn.Dropout(self.dropout_p)
self.gru = nn.GRU(self.hidden_size, self.hidden_size)
self.attn = nn.Linear(self.hidden_size, self.hidden_size)
# hc: [hidden, context]
self.Whc = nn.Linear(self.hidden_size * 2, self.hidden_size)
# s: softmax
self.Ws = nn.Linear(self.hidden_size, self.output_size)
def forward(self, input, hidden, encoder_outputs):
embedded = self.embedding(input).view(1, 1, -1)
embedded = self.dropout(embedded)
gru_out, hidden = self.gru(embedded, hidden)
# [0] remove the dimension of directions x layers for now
attn_prod = torch.mm(self.attn(hidden)[0], encoder_outputs.t())
attn_weights = F.softmax(attn_prod, dim=1) # eq. 7/8
context = torch.mm(attn_weights, encoder_outputs)
# hc: [hidden: context]
out_hc = F.tanh(self.Whc(torch.cat([hidden[0], context], dim=1)) # eq.5
output = F.log_softmax(self.Ws(out_hc), dim=1) eq. 6
return output, hidden, attn_weights
我研究过
中实施的注意力
https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html
和
https://github.com/spro/practical-pytorch/blob/master/seq2seq-translation/seq2seq-translation.ipynb
这个版本有效,它严格遵循 Luong Attention(一般)的定义。与问题中的主要区别是 embedding_size
和 hidden_size
的分离,这似乎对实验后的训练很重要。之前我把它们都弄成一样的大小(256),这样学习起来很麻烦,网络好像只能学习到一半的序列。
class EncoderRNN(nn.Module):
def __init__(self, input_size, embedding_size, hidden_size,
num_layers=1, bidirectional=False, batch_size=1):
super(EncoderRNN, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.bidirectional = bidirectional
self.batch_size = batch_size
self.embedding = nn.Embedding(input_size, embedding_size)
self.gru = nn.GRU(embedding_size, hidden_size, num_layers,
bidirectional=bidirectional)
def forward(self, input, hidden):
embedded = self.embedding(input).view(1, 1, -1)
output, hidden = self.gru(embedded, hidden)
return output, hidden
def initHidden(self):
directions = 2 if self.bidirectional else 1
return torch.zeros(
self.num_layers * directions,
self.batch_size,
self.hidden_size,
device=DEVICE
)
class AttnDecoderRNN(nn.Module):
def __init__(self, embedding_size, hidden_size, output_size, dropout_p=0):
super(AttnDecoderRNN, self).__init__()
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.output_size = output_size
self.dropout_p = dropout_p
self.embedding = nn.Embedding(
num_embeddings=output_size,
embedding_dim=embedding_size
)
self.dropout = nn.Dropout(self.dropout_p)
self.gru = nn.GRU(embedding_size, hidden_size)
self.attn = nn.Linear(hidden_size, hidden_size)
# hc: [hidden, context]
self.Whc = nn.Linear(hidden_size * 2, hidden_size)
# s: softmax
self.Ws = nn.Linear(hidden_size, output_size)
def forward(self, input, hidden, encoder_outputs):
embedded = self.embedding(input).view(1, 1, -1)
embedded = self.dropout(embedded)
gru_out, hidden = self.gru(embedded, hidden)
attn_prod = torch.mm(self.attn(hidden)[0], encoder_outputs.t())
attn_weights = F.softmax(attn_prod, dim=1)
context = torch.mm(attn_weights, encoder_outputs)
# hc: [hidden: context]
hc = torch.cat([hidden[0], context], dim=1)
out_hc = F.tanh(self.Whc(hc))
output = F.log_softmax(self.Ws(out_hc), dim=1)
return output, hidden, attn_weights
我正在尝试自己在 PyTorch 中实现 Luong et al. 2015 中描述的注意力,但我无法让它发挥作用。下面是我的代码,我现在只对 "general" 注意力案例感兴趣。我想知道我是否遗漏了任何明显的错误。它运行,但似乎不学习。
class AttnDecoderRNN(nn.Module):
def __init__(self, hidden_size, output_size, dropout_p=0.1):
super(AttnDecoderRNN, self).__init__()
self.hidden_size = hidden_size
self.output_size = output_size
self.dropout_p = dropout_p
self.embedding = nn.Embedding(
num_embeddings=self.output_size,
embedding_dim=self.hidden_size
)
self.dropout = nn.Dropout(self.dropout_p)
self.gru = nn.GRU(self.hidden_size, self.hidden_size)
self.attn = nn.Linear(self.hidden_size, self.hidden_size)
# hc: [hidden, context]
self.Whc = nn.Linear(self.hidden_size * 2, self.hidden_size)
# s: softmax
self.Ws = nn.Linear(self.hidden_size, self.output_size)
def forward(self, input, hidden, encoder_outputs):
embedded = self.embedding(input).view(1, 1, -1)
embedded = self.dropout(embedded)
gru_out, hidden = self.gru(embedded, hidden)
# [0] remove the dimension of directions x layers for now
attn_prod = torch.mm(self.attn(hidden)[0], encoder_outputs.t())
attn_weights = F.softmax(attn_prod, dim=1) # eq. 7/8
context = torch.mm(attn_weights, encoder_outputs)
# hc: [hidden: context]
out_hc = F.tanh(self.Whc(torch.cat([hidden[0], context], dim=1)) # eq.5
output = F.log_softmax(self.Ws(out_hc), dim=1) eq. 6
return output, hidden, attn_weights
我研究过
中实施的注意力https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html
和
https://github.com/spro/practical-pytorch/blob/master/seq2seq-translation/seq2seq-translation.ipynb
这个版本有效,它严格遵循 Luong Attention(一般)的定义。与问题中的主要区别是 embedding_size
和 hidden_size
的分离,这似乎对实验后的训练很重要。之前我把它们都弄成一样的大小(256),这样学习起来很麻烦,网络好像只能学习到一半的序列。
class EncoderRNN(nn.Module):
def __init__(self, input_size, embedding_size, hidden_size,
num_layers=1, bidirectional=False, batch_size=1):
super(EncoderRNN, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.bidirectional = bidirectional
self.batch_size = batch_size
self.embedding = nn.Embedding(input_size, embedding_size)
self.gru = nn.GRU(embedding_size, hidden_size, num_layers,
bidirectional=bidirectional)
def forward(self, input, hidden):
embedded = self.embedding(input).view(1, 1, -1)
output, hidden = self.gru(embedded, hidden)
return output, hidden
def initHidden(self):
directions = 2 if self.bidirectional else 1
return torch.zeros(
self.num_layers * directions,
self.batch_size,
self.hidden_size,
device=DEVICE
)
class AttnDecoderRNN(nn.Module):
def __init__(self, embedding_size, hidden_size, output_size, dropout_p=0):
super(AttnDecoderRNN, self).__init__()
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.output_size = output_size
self.dropout_p = dropout_p
self.embedding = nn.Embedding(
num_embeddings=output_size,
embedding_dim=embedding_size
)
self.dropout = nn.Dropout(self.dropout_p)
self.gru = nn.GRU(embedding_size, hidden_size)
self.attn = nn.Linear(hidden_size, hidden_size)
# hc: [hidden, context]
self.Whc = nn.Linear(hidden_size * 2, hidden_size)
# s: softmax
self.Ws = nn.Linear(hidden_size, output_size)
def forward(self, input, hidden, encoder_outputs):
embedded = self.embedding(input).view(1, 1, -1)
embedded = self.dropout(embedded)
gru_out, hidden = self.gru(embedded, hidden)
attn_prod = torch.mm(self.attn(hidden)[0], encoder_outputs.t())
attn_weights = F.softmax(attn_prod, dim=1)
context = torch.mm(attn_weights, encoder_outputs)
# hc: [hidden: context]
hc = torch.cat([hidden[0], context], dim=1)
out_hc = F.tanh(self.Whc(hc))
output = F.log_softmax(self.Ws(out_hc), dim=1)
return output, hidden, attn_weights