R - 计算组合分布的 MLE
R - Calculate MLE of combined distribution
我有一个包含 1000 个值的给定数据集,它是两个正态分布 N(y1,1) 和 N(y2,1) 的组合。密度如下所示:
我想计算数据集中 N(y1,1) 和 N(y2,1) 的部分以及两个均值 y1 和 y2。这是我目前的做法:
z <- #Dataset as vector with 1000 entries#
lik <- function(mu1, mu2, part) -sum(part*dnorm(z, mu1, 1, log=TRUE) + (1-part)*dnorm(z, mu2, 1, log=TRUE))
mle <- mle(lik, start=list(mu1=-7, mu2=5, part=0.33))
但这给了我以下错误信息:
Error in solve.default(oout$hessian) :
Lapack routine dgesv: system is exactly singular: U[1,1] = 0
我重新定义了使用 log()
而不是参数 log = TRUE
的可能性。
奇怪的是,尽管有警告,但以下内容仍然有效。请注意,它们是 警告,而不是错误。
library(stats4)
set.seed(7850) # Make the results reproducible
z <- sample(c(rnorm(333, -7, 1), rnorm(667, 5, 1)))
plot(density(z))
lik2 <- function(mu1, mu2, part) -sum(log(part*dnorm(z, mu1, 1) + (1-part)*dnorm(z, mu2, 1)))
mle2 <- mle(lik2, start = list(mu1 = -6, mu2 = 6, part = 1/2))
#Warning messages:
#1: In log(part * dnorm(z, mu1, 1) + (1 - part) * dnorm(z, mu2, 1)) :
# NaNs produced
#2: In log(part * dnorm(z, mu1, 1) + (1 - part) * dnorm(z, mu2, 1)) :
# NaNs produced
#3: In log(part * dnorm(z, mu1, 1) + (1 - part) * dnorm(z, mu2, 1)) :
# NaNs produced
#4: In log(part * dnorm(z, mu1, 1) + (1 - part) * dnorm(z, mu2, 1)) :
# NaNs produced
mle2
#
#Call:
#mle(minuslogl = lik2, start = list(mu1 = -6, mu2 = 6, part = 1/2))
#
#Coefficients:
# mu1 mu2 part
#-7.1091780 4.9377339 0.3330038
我有一个包含 1000 个值的给定数据集,它是两个正态分布 N(y1,1) 和 N(y2,1) 的组合。密度如下所示:
我想计算数据集中 N(y1,1) 和 N(y2,1) 的部分以及两个均值 y1 和 y2。这是我目前的做法:
z <- #Dataset as vector with 1000 entries#
lik <- function(mu1, mu2, part) -sum(part*dnorm(z, mu1, 1, log=TRUE) + (1-part)*dnorm(z, mu2, 1, log=TRUE))
mle <- mle(lik, start=list(mu1=-7, mu2=5, part=0.33))
但这给了我以下错误信息:
Error in solve.default(oout$hessian) :
Lapack routine dgesv: system is exactly singular: U[1,1] = 0
我重新定义了使用 log()
而不是参数 log = TRUE
的可能性。
奇怪的是,尽管有警告,但以下内容仍然有效。请注意,它们是 警告,而不是错误。
library(stats4)
set.seed(7850) # Make the results reproducible
z <- sample(c(rnorm(333, -7, 1), rnorm(667, 5, 1)))
plot(density(z))
lik2 <- function(mu1, mu2, part) -sum(log(part*dnorm(z, mu1, 1) + (1-part)*dnorm(z, mu2, 1)))
mle2 <- mle(lik2, start = list(mu1 = -6, mu2 = 6, part = 1/2))
#Warning messages:
#1: In log(part * dnorm(z, mu1, 1) + (1 - part) * dnorm(z, mu2, 1)) :
# NaNs produced
#2: In log(part * dnorm(z, mu1, 1) + (1 - part) * dnorm(z, mu2, 1)) :
# NaNs produced
#3: In log(part * dnorm(z, mu1, 1) + (1 - part) * dnorm(z, mu2, 1)) :
# NaNs produced
#4: In log(part * dnorm(z, mu1, 1) + (1 - part) * dnorm(z, mu2, 1)) :
# NaNs produced
mle2
#
#Call:
#mle(minuslogl = lik2, start = list(mu1 = -6, mu2 = 6, part = 1/2))
#
#Coefficients:
# mu1 mu2 part
#-7.1091780 4.9377339 0.3330038