带有 AWS SQS 的 Airflow CeleryExecutor
Airflow CeleryExecutor With AWS SQS
我正在尝试对我的 Airflow 设置进行集群,我正在使用 this article 来这样做。我刚刚将我的 airflow.cfg
文件配置为使用 CeleryExecutor
,我将我的 sql_alchemy_conn
指向我的 postgresql 数据库,它在同一个主节点上 运行,我设置了 broker_url
使用 SQS(我没有设置 access_key_id 或 secret_key 因为它在 EC2-Instance 上是 运行 它不需要那些),我已经设置了celery_result_backend
到我的 postgresql 服务器。我保存了我的新 airflow.cfg 更改,我 运行 airflow initdb
,然后我 运行 airflow scheduler
我从调度程序中收到此错误,
[2018-06-07 21:07:33,420] {celery_executor.py:101} ERROR - Error syncing the celery executor, ignoring it:
[2018-06-07 21:07:33,421] {celery_executor.py:102} ERROR - Can't load plugin: sqlalchemy.dialects:psycopg2
Traceback (most recent call last):
File "/usr/local/lib/python3.6/site-packages/airflow/executors/celery_executor.py", line 83, in sync
state = async.state
File "/usr/local/lib/python3.6/site-packages/celery/result.py", line 433, in state
return self._get_task_meta()['status']
File "/usr/local/lib/python3.6/site-packages/celery/result.py", line 372, in _get_task_meta
return self._maybe_set_cache(self.backend.get_task_meta(self.id))
File "/usr/local/lib/python3.6/site-packages/celery/backends/base.py", line 344, in get_task_meta
meta = self._get_task_meta_for(task_id)
File "/usr/local/lib/python3.6/site-packages/celery/backends/database/__init__.py", line 53, in _inner
return fun(*args, **kwargs)
File "/usr/local/lib/python3.6/site-packages/celery/backends/database/__init__.py", line 122, in _get_task_meta_for
session = self.ResultSession()
File "/usr/local/lib/python3.6/site-packages/celery/backends/database/__init__.py", line 99, in ResultSession
**self.engine_options)
File "/usr/local/lib/python3.6/site-packages/celery/backends/database/session.py", line 59, in session_factory
engine, session = self.create_session(dburi, **kwargs)
File "/usr/local/lib/python3.6/site-packages/celery/backends/database/session.py", line 45, in create_session
engine = self.get_engine(dburi, **kwargs)
File "/usr/local/lib/python3.6/site-packages/celery/backends/database/session.py", line 42, in get_engine
return create_engine(dburi, poolclass=NullPool)
File "/usr/local/lib/python3.6/site-packages/sqlalchemy/engine/__init__.py", line 424, in create_engine
return strategy.create(*args, **kwargs)
File "/usr/local/lib/python3.6/site-packages/sqlalchemy/engine/strategies.py", line 57, in create
entrypoint = u._get_entrypoint()
File "/usr/local/lib/python3.6/site-packages/sqlalchemy/engine/url.py", line 156, in _get_entrypoint
cls = registry.load(name)
File "/usr/local/lib/python3.6/site-packages/sqlalchemy/util/langhelpers.py", line 221, in load
(self.group, name))
sqlalchemy.exc.NoSuchModuleError: Can't load plugin: sqlalchemy.dialects:psycopg2
这是我的 airflow.cfg
文件,
[core]
# The home folder for airflow, default is ~/airflow
airflow_home = /home/ec2-user/airflow
# The folder where your airflow pipelines live, most likely a
# subfolder in a code repository
# This path must be absolute
dags_folder = /home/ec2-user/airflow/dags
# The folder where airflow should store its log files
# This path must be absolute
base_log_folder = /home/ec2-user/airflow/logs
# Airflow can store logs remotely in AWS S3 or Google Cloud Storage. Users
# must supply an Airflow connection id that provides access to the storage
# location.
remote_log_conn_id =
encrypt_s3_logs = False
# Logging level
logging_level = INFO
# Logging class
# Specify the class that will specify the logging configuration
# This class has to be on the python classpath
# logging_config_class = my.path.default_local_settings.LOGGING_CONFIG
logging_config_class =
# Log format
log_format = [%%(asctime)s] {%%(filename)s:%%(lineno)d} %%(levelname)s - %%(message)s
simple_log_format = %%(asctime)s %%(levelname)s - %%(message)s
# The executor class that airflow should use. Choices include
# SequentialExecutor, LocalExecutor, CeleryExecutor, DaskExecutor
#executor = SequentialExecutor
executor = CeleryExecutor
# The SqlAlchemy connection string to the metadata database.
# SqlAlchemy supports many different database engine, more information
# their website
#sql_alchemy_conn = sqlite:////home/ec2-user/airflow/airflow.db
sql_alchemy_conn = postgresql+psycopg2://postgres:$password@localhost/datalake_airflow_cluster_v1_master1_database_1
# The SqlAlchemy pool size is the maximum number of database connections
# in the pool.
sql_alchemy_pool_size = 5
# The SqlAlchemy pool recycle is the number of seconds a connection
# can be idle in the pool before it is invalidated. This config does
# not apply to sqlite.
sql_alchemy_pool_recycle = 3600
# The amount of parallelism as a setting to the executor. This defines
# the max number of task instances that should run simultaneously
# on this airflow installation
parallelism = 32
# The number of task instances allowed to run concurrently by the scheduler
dag_concurrency = 16
# Are DAGs paused by default at creation
dags_are_paused_at_creation = True
# When not using pools, tasks are run in the "default pool",
# whose size is guided by this config element
non_pooled_task_slot_count = 128
# The maximum number of active DAG runs per DAG
max_active_runs_per_dag = 16
# Whether to load the examples that ship with Airflow. It's good to
# get started, but you probably want to set this to False in a production
# environment
load_examples = True
# Where your Airflow plugins are stored
plugins_folder = /home/ec2-user/airflow/plugins
# Secret key to save connection passwords in the db
fernet_key = ibwZ5uSASmZGphBmwdJ4BIhd1-5WZXMTTgMF9u1_dGM=
# Whether to disable pickling dags
donot_pickle = False
# How long before timing out a python file import while filling the DagBag
dagbag_import_timeout = 30
# The class to use for running task instances in a subprocess
task_runner = BashTaskRunner
# If set, tasks without a `run_as_user` argument will be run with this user
# Can be used to de-elevate a sudo user running Airflow when executing tasks
default_impersonation =
# What security module to use (for example kerberos):
security =
# Turn unit test mode on (overwrites many configuration options with test
# values at runtime)
unit_test_mode = False
# Name of handler to read task instance logs.
# Default to use file task handler.
task_log_reader = file.task
# Whether to enable pickling for xcom (note that this is insecure and allows for
# RCE exploits). This will be deprecated in Airflow 2.0 (be forced to False).
enable_xcom_pickling = True
# When a task is killed forcefully, this is the amount of time in seconds that
# it has to cleanup after it is sent a SIGTERM, before it is SIGKILLED
killed_task_cleanup_time = 60
[cli]
# In what way should the cli access the API. The LocalClient will use the
# database directly, while the json_client will use the api running on the
# webserver
api_client = airflow.api.client.local_client
endpoint_url = http://localhost:8080
[api]
# How to authenticate users of the API
auth_backend = airflow.api.auth.backend.default
[operators]
# The default owner assigned to each new operator, unless
# provided explicitly or passed via `default_args`
default_owner = Airflow
default_cpus = 1
default_ram = 512
default_disk = 512
default_gpus = 0
[webserver]
# The base url of your website as airflow cannot guess what domain or
# cname you are using. This is used in automated emails that
# airflow sends to point links to the right web server
base_url = http://localhost:8080
# The ip specified when starting the web server
web_server_host = 0.0.0.0
# The port on which to run the web server
web_server_port = 8080
# Paths to the SSL certificate and key for the web server. When both are
# provided SSL will be enabled. This does not change the web server port.
web_server_ssl_cert =
web_server_ssl_key =
# Number of seconds the gunicorn webserver waits before timing out on a worker
web_server_worker_timeout = 120
# Number of workers to refresh at a time. When set to 0, worker refresh is
# disabled. When nonzero, airflow periodically refreshes webserver workers by
# bringing up new ones and killing old ones.
worker_refresh_batch_size = 1
# Number of seconds to wait before refreshing a batch of workers.
worker_refresh_interval = 30
# Secret key used to run your flask app
secret_key = temporary_key
# Number of workers to run the Gunicorn web server
workers = 4
# The worker class gunicorn should use. Choices include
# sync (default), eventlet, gevent
worker_class = sync
# Log files for the gunicorn webserver. '-' means log to stderr.
access_logfile = -
error_logfile = -
# Expose the configuration file in the web server
expose_config = False
# Set to true to turn on authentication:
# http://pythonhosted.org/airflow/security.html#web-authentication
authenticate = False
# Filter the list of dags by owner name (requires authentication to be enabled)
filter_by_owner = False
# Filtering mode. Choices include user (default) and ldapgroup.
# Ldap group filtering requires using the ldap backend
#
# Note that the ldap server needs the "memberOf" overlay to be set up
# in order to user the ldapgroup mode.
owner_mode = user
# Default DAG view. Valid values are:
# tree, graph, duration, gantt, landing_times
dag_default_view = tree
# Default DAG orientation. Valid values are:
# LR (Left->Right), TB (Top->Bottom), RL (Right->Left), BT (Bottom->Top)
dag_orientation = LR
# Puts the webserver in demonstration mode; blurs the names of Operators for
# privacy.
demo_mode = False
# The amount of time (in secs) webserver will wait for initial handshake
# while fetching logs from other worker machine
log_fetch_timeout_sec = 5
# By default, the webserver shows paused DAGs. Flip this to hide paused
# DAGs by default
hide_paused_dags_by_default = False
# Consistent page size across all listing views in the UI
page_size = 100
[email]
email_backend = airflow.utils.email.send_email_smtp
[smtp]
# If you want airflow to send emails on retries, failure, and you want to use
# the airflow.utils.email.send_email_smtp function, you have to configure an
# smtp server here
smtp_host = localhost
smtp_starttls = True
smtp_ssl = False
# Uncomment and set the user/pass settings if you want to use SMTP AUTH
# smtp_user = airflow
# smtp_password = airflow
smtp_port = 25
smtp_mail_from = airflow@example.com
[celery]
# This section only applies if you are using the CeleryExecutor in
# [core] section above
# The app name that will be used by celery
celery_app_name = airflow.executors.celery_executor
# The concurrency that will be used when starting workers with the
# "airflow worker" command. This defines the number of task instances that
# a worker will take, so size up your workers based on the resources on
# your worker box and the nature of your tasks
celeryd_concurrency = 16
# When you start an airflow worker, airflow starts a tiny web server
# subprocess to serve the workers local log files to the airflow main
# web server, who then builds pages and sends them to users. This defines
# the port on which the logs are served. It needs to be unused, and open
# visible from the main web server to connect into the workers.
worker_log_server_port = 8793
# The Celery broker URL. Celery supports RabbitMQ, Redis and experimentally
# a sqlalchemy database. Refer to the Celery documentation for more
# information.
#broker_url = sqla+mysql://airflow:airflow@localhost:3306/airflow
broker_url = sqs://
# Another key Celery setting
#celery_result_backend = db+mysql://airflow:airflow@localhost:3306/airflow
celery_result_backend = db+psycopg2://postgres:$password@localhost/datalake_airflow_cluster_v1_master1_database_1
# Celery Flower is a sweet UI for Celery. Airflow has a shortcut to start
# it `airflow flower`. This defines the IP that Celery Flower runs on
flower_host = 0.0.0.0
# This defines the port that Celery Flower runs on
flower_port = 5555
# Default queue that tasks get assigned to and that worker listen on.
default_queue = default
# Import path for celery configuration options
celery_config_options = airflow.config_templates.default_celery.DEFAULT_CELERY_CONFIG
[dask]
# This section only applies if you are using the DaskExecutor in
# [core] section above
# The IP address and port of the Dask cluster's scheduler.
cluster_address = 127.0.0.1:8786
[scheduler]
# Task instances listen for external kill signal (when you clear tasks
# from the CLI or the UI), this defines the frequency at which they should
# listen (in seconds).
job_heartbeat_sec = 5
# The scheduler constantly tries to trigger new tasks (look at the
# scheduler section in the docs for more information). This defines
# how often the scheduler should run (in seconds).
scheduler_heartbeat_sec = 5
# after how much time should the scheduler terminate in seconds
# -1 indicates to run continuously (see also num_runs)
run_duration = -1
# after how much time a new DAGs should be picked up from the filesystem
min_file_process_interval = 0
dag_dir_list_interval = 300
# How often should stats be printed to the logs
print_stats_interval = 30
child_process_log_directory = /home/ec2-user/airflow/logs/scheduler
# Local task jobs periodically heartbeat to the DB. If the job has
# not heartbeat in this many seconds, the scheduler will mark the
# associated task instance as failed and will re-schedule the task.
scheduler_zombie_task_threshold = 300
# Turn off scheduler catchup by setting this to False.
# Default behavior is unchanged and
# Command Line Backfills still work, but the scheduler
# will not do scheduler catchup if this is False,
# however it can be set on a per DAG basis in the
# DAG definition (catchup)
catchup_by_default = True
# This changes the batch size of queries in the scheduling main loop.
# This depends on query length limits and how long you are willing to hold locks.
# 0 for no limit
max_tis_per_query = 0
# Statsd (https://github.com/etsy/statsd) integration settings
statsd_on = False
statsd_host = localhost
statsd_port = 8125
statsd_prefix = airflow
# The scheduler can run multiple threads in parallel to schedule dags.
# This defines how many threads will run.
max_threads = 2
authenticate = False
[ldap]
# set this to ldaps://<your.ldap.server>:<port>
uri =
user_filter = objectClass=*
user_name_attr = uid
group_member_attr = memberOf
superuser_filter =
data_profiler_filter =
bind_user = cn=Manager,dc=example,dc=com
bind_password = insecure
basedn = dc=example,dc=com
cacert = /etc/ca/ldap_ca.crt
search_scope = LEVEL
[mesos]
# Mesos master address which MesosExecutor will connect to.
master = localhost:5050
# The framework name which Airflow scheduler will register itself as on mesos
framework_name = Airflow
# Number of cpu cores required for running one task instance using
# 'airflow run <dag_id> <task_id> <execution_date> --local -p <pickle_id>'
# command on a mesos slave
task_cpu = 1
# Memory in MB required for running one task instance using
# 'airflow run <dag_id> <task_id> <execution_date> --local -p <pickle_id>'
# command on a mesos slave
task_memory = 256
# Enable framework checkpointing for mesos
# See http://mesos.apache.org/documentation/latest/slave-recovery/
checkpoint = False
# Failover timeout in milliseconds.
# When checkpointing is enabled and this option is set, Mesos waits
# until the configured timeout for
# the MesosExecutor framework to re-register after a failover. Mesos
# shuts down running tasks if the
# MesosExecutor framework fails to re-register within this timeframe.
# failover_timeout = 604800
# Enable framework authentication for mesos
# See http://mesos.apache.org/documentation/latest/configuration/
authenticate = False
# Mesos credentials, if authentication is enabled
# default_principal = admin
# default_secret = admin
[kerberos]
ccache = /tmp/airflow_krb5_ccache
# gets augmented with fqdn
principal = airflow
reinit_frequency = 3600
kinit_path = kinit
keytab = airflow.keytab
[github_enterprise]
api_rev = v3
[admin]
# UI to hide sensitive variable fields when set to True
hide_sensitive_variable_fields = True
我不太确定这里发生了什么。我需要在 Celery 或其他任何东西上做额外的设置吗?我也对它如何知道在 AWS 上使用哪个 SQS 队列感到困惑?它自己创建一个新队列还是我需要在 AWS 上创建队列并将 url 放在某个地方?
在这里查看这个问题:
取自那里:
所以替换:
celery_result_backend = postgresql+psycopg2://username:password@192.168.1.2:5432/airflow
类似的东西:
celery_result_backend = db+postgresql://username:password@192.168.1.2:5432/airflow
我正在尝试对我的 Airflow 设置进行集群,我正在使用 this article 来这样做。我刚刚将我的 airflow.cfg
文件配置为使用 CeleryExecutor
,我将我的 sql_alchemy_conn
指向我的 postgresql 数据库,它在同一个主节点上 运行,我设置了 broker_url
使用 SQS(我没有设置 access_key_id 或 secret_key 因为它在 EC2-Instance 上是 运行 它不需要那些),我已经设置了celery_result_backend
到我的 postgresql 服务器。我保存了我的新 airflow.cfg 更改,我 运行 airflow initdb
,然后我 运行 airflow scheduler
我从调度程序中收到此错误,
[2018-06-07 21:07:33,420] {celery_executor.py:101} ERROR - Error syncing the celery executor, ignoring it:
[2018-06-07 21:07:33,421] {celery_executor.py:102} ERROR - Can't load plugin: sqlalchemy.dialects:psycopg2
Traceback (most recent call last):
File "/usr/local/lib/python3.6/site-packages/airflow/executors/celery_executor.py", line 83, in sync
state = async.state
File "/usr/local/lib/python3.6/site-packages/celery/result.py", line 433, in state
return self._get_task_meta()['status']
File "/usr/local/lib/python3.6/site-packages/celery/result.py", line 372, in _get_task_meta
return self._maybe_set_cache(self.backend.get_task_meta(self.id))
File "/usr/local/lib/python3.6/site-packages/celery/backends/base.py", line 344, in get_task_meta
meta = self._get_task_meta_for(task_id)
File "/usr/local/lib/python3.6/site-packages/celery/backends/database/__init__.py", line 53, in _inner
return fun(*args, **kwargs)
File "/usr/local/lib/python3.6/site-packages/celery/backends/database/__init__.py", line 122, in _get_task_meta_for
session = self.ResultSession()
File "/usr/local/lib/python3.6/site-packages/celery/backends/database/__init__.py", line 99, in ResultSession
**self.engine_options)
File "/usr/local/lib/python3.6/site-packages/celery/backends/database/session.py", line 59, in session_factory
engine, session = self.create_session(dburi, **kwargs)
File "/usr/local/lib/python3.6/site-packages/celery/backends/database/session.py", line 45, in create_session
engine = self.get_engine(dburi, **kwargs)
File "/usr/local/lib/python3.6/site-packages/celery/backends/database/session.py", line 42, in get_engine
return create_engine(dburi, poolclass=NullPool)
File "/usr/local/lib/python3.6/site-packages/sqlalchemy/engine/__init__.py", line 424, in create_engine
return strategy.create(*args, **kwargs)
File "/usr/local/lib/python3.6/site-packages/sqlalchemy/engine/strategies.py", line 57, in create
entrypoint = u._get_entrypoint()
File "/usr/local/lib/python3.6/site-packages/sqlalchemy/engine/url.py", line 156, in _get_entrypoint
cls = registry.load(name)
File "/usr/local/lib/python3.6/site-packages/sqlalchemy/util/langhelpers.py", line 221, in load
(self.group, name))
sqlalchemy.exc.NoSuchModuleError: Can't load plugin: sqlalchemy.dialects:psycopg2
这是我的 airflow.cfg
文件,
[core]
# The home folder for airflow, default is ~/airflow
airflow_home = /home/ec2-user/airflow
# The folder where your airflow pipelines live, most likely a
# subfolder in a code repository
# This path must be absolute
dags_folder = /home/ec2-user/airflow/dags
# The folder where airflow should store its log files
# This path must be absolute
base_log_folder = /home/ec2-user/airflow/logs
# Airflow can store logs remotely in AWS S3 or Google Cloud Storage. Users
# must supply an Airflow connection id that provides access to the storage
# location.
remote_log_conn_id =
encrypt_s3_logs = False
# Logging level
logging_level = INFO
# Logging class
# Specify the class that will specify the logging configuration
# This class has to be on the python classpath
# logging_config_class = my.path.default_local_settings.LOGGING_CONFIG
logging_config_class =
# Log format
log_format = [%%(asctime)s] {%%(filename)s:%%(lineno)d} %%(levelname)s - %%(message)s
simple_log_format = %%(asctime)s %%(levelname)s - %%(message)s
# The executor class that airflow should use. Choices include
# SequentialExecutor, LocalExecutor, CeleryExecutor, DaskExecutor
#executor = SequentialExecutor
executor = CeleryExecutor
# The SqlAlchemy connection string to the metadata database.
# SqlAlchemy supports many different database engine, more information
# their website
#sql_alchemy_conn = sqlite:////home/ec2-user/airflow/airflow.db
sql_alchemy_conn = postgresql+psycopg2://postgres:$password@localhost/datalake_airflow_cluster_v1_master1_database_1
# The SqlAlchemy pool size is the maximum number of database connections
# in the pool.
sql_alchemy_pool_size = 5
# The SqlAlchemy pool recycle is the number of seconds a connection
# can be idle in the pool before it is invalidated. This config does
# not apply to sqlite.
sql_alchemy_pool_recycle = 3600
# The amount of parallelism as a setting to the executor. This defines
# the max number of task instances that should run simultaneously
# on this airflow installation
parallelism = 32
# The number of task instances allowed to run concurrently by the scheduler
dag_concurrency = 16
# Are DAGs paused by default at creation
dags_are_paused_at_creation = True
# When not using pools, tasks are run in the "default pool",
# whose size is guided by this config element
non_pooled_task_slot_count = 128
# The maximum number of active DAG runs per DAG
max_active_runs_per_dag = 16
# Whether to load the examples that ship with Airflow. It's good to
# get started, but you probably want to set this to False in a production
# environment
load_examples = True
# Where your Airflow plugins are stored
plugins_folder = /home/ec2-user/airflow/plugins
# Secret key to save connection passwords in the db
fernet_key = ibwZ5uSASmZGphBmwdJ4BIhd1-5WZXMTTgMF9u1_dGM=
# Whether to disable pickling dags
donot_pickle = False
# How long before timing out a python file import while filling the DagBag
dagbag_import_timeout = 30
# The class to use for running task instances in a subprocess
task_runner = BashTaskRunner
# If set, tasks without a `run_as_user` argument will be run with this user
# Can be used to de-elevate a sudo user running Airflow when executing tasks
default_impersonation =
# What security module to use (for example kerberos):
security =
# Turn unit test mode on (overwrites many configuration options with test
# values at runtime)
unit_test_mode = False
# Name of handler to read task instance logs.
# Default to use file task handler.
task_log_reader = file.task
# Whether to enable pickling for xcom (note that this is insecure and allows for
# RCE exploits). This will be deprecated in Airflow 2.0 (be forced to False).
enable_xcom_pickling = True
# When a task is killed forcefully, this is the amount of time in seconds that
# it has to cleanup after it is sent a SIGTERM, before it is SIGKILLED
killed_task_cleanup_time = 60
[cli]
# In what way should the cli access the API. The LocalClient will use the
# database directly, while the json_client will use the api running on the
# webserver
api_client = airflow.api.client.local_client
endpoint_url = http://localhost:8080
[api]
# How to authenticate users of the API
auth_backend = airflow.api.auth.backend.default
[operators]
# The default owner assigned to each new operator, unless
# provided explicitly or passed via `default_args`
default_owner = Airflow
default_cpus = 1
default_ram = 512
default_disk = 512
default_gpus = 0
[webserver]
# The base url of your website as airflow cannot guess what domain or
# cname you are using. This is used in automated emails that
# airflow sends to point links to the right web server
base_url = http://localhost:8080
# The ip specified when starting the web server
web_server_host = 0.0.0.0
# The port on which to run the web server
web_server_port = 8080
# Paths to the SSL certificate and key for the web server. When both are
# provided SSL will be enabled. This does not change the web server port.
web_server_ssl_cert =
web_server_ssl_key =
# Number of seconds the gunicorn webserver waits before timing out on a worker
web_server_worker_timeout = 120
# Number of workers to refresh at a time. When set to 0, worker refresh is
# disabled. When nonzero, airflow periodically refreshes webserver workers by
# bringing up new ones and killing old ones.
worker_refresh_batch_size = 1
# Number of seconds to wait before refreshing a batch of workers.
worker_refresh_interval = 30
# Secret key used to run your flask app
secret_key = temporary_key
# Number of workers to run the Gunicorn web server
workers = 4
# The worker class gunicorn should use. Choices include
# sync (default), eventlet, gevent
worker_class = sync
# Log files for the gunicorn webserver. '-' means log to stderr.
access_logfile = -
error_logfile = -
# Expose the configuration file in the web server
expose_config = False
# Set to true to turn on authentication:
# http://pythonhosted.org/airflow/security.html#web-authentication
authenticate = False
# Filter the list of dags by owner name (requires authentication to be enabled)
filter_by_owner = False
# Filtering mode. Choices include user (default) and ldapgroup.
# Ldap group filtering requires using the ldap backend
#
# Note that the ldap server needs the "memberOf" overlay to be set up
# in order to user the ldapgroup mode.
owner_mode = user
# Default DAG view. Valid values are:
# tree, graph, duration, gantt, landing_times
dag_default_view = tree
# Default DAG orientation. Valid values are:
# LR (Left->Right), TB (Top->Bottom), RL (Right->Left), BT (Bottom->Top)
dag_orientation = LR
# Puts the webserver in demonstration mode; blurs the names of Operators for
# privacy.
demo_mode = False
# The amount of time (in secs) webserver will wait for initial handshake
# while fetching logs from other worker machine
log_fetch_timeout_sec = 5
# By default, the webserver shows paused DAGs. Flip this to hide paused
# DAGs by default
hide_paused_dags_by_default = False
# Consistent page size across all listing views in the UI
page_size = 100
[email]
email_backend = airflow.utils.email.send_email_smtp
[smtp]
# If you want airflow to send emails on retries, failure, and you want to use
# the airflow.utils.email.send_email_smtp function, you have to configure an
# smtp server here
smtp_host = localhost
smtp_starttls = True
smtp_ssl = False
# Uncomment and set the user/pass settings if you want to use SMTP AUTH
# smtp_user = airflow
# smtp_password = airflow
smtp_port = 25
smtp_mail_from = airflow@example.com
[celery]
# This section only applies if you are using the CeleryExecutor in
# [core] section above
# The app name that will be used by celery
celery_app_name = airflow.executors.celery_executor
# The concurrency that will be used when starting workers with the
# "airflow worker" command. This defines the number of task instances that
# a worker will take, so size up your workers based on the resources on
# your worker box and the nature of your tasks
celeryd_concurrency = 16
# When you start an airflow worker, airflow starts a tiny web server
# subprocess to serve the workers local log files to the airflow main
# web server, who then builds pages and sends them to users. This defines
# the port on which the logs are served. It needs to be unused, and open
# visible from the main web server to connect into the workers.
worker_log_server_port = 8793
# The Celery broker URL. Celery supports RabbitMQ, Redis and experimentally
# a sqlalchemy database. Refer to the Celery documentation for more
# information.
#broker_url = sqla+mysql://airflow:airflow@localhost:3306/airflow
broker_url = sqs://
# Another key Celery setting
#celery_result_backend = db+mysql://airflow:airflow@localhost:3306/airflow
celery_result_backend = db+psycopg2://postgres:$password@localhost/datalake_airflow_cluster_v1_master1_database_1
# Celery Flower is a sweet UI for Celery. Airflow has a shortcut to start
# it `airflow flower`. This defines the IP that Celery Flower runs on
flower_host = 0.0.0.0
# This defines the port that Celery Flower runs on
flower_port = 5555
# Default queue that tasks get assigned to and that worker listen on.
default_queue = default
# Import path for celery configuration options
celery_config_options = airflow.config_templates.default_celery.DEFAULT_CELERY_CONFIG
[dask]
# This section only applies if you are using the DaskExecutor in
# [core] section above
# The IP address and port of the Dask cluster's scheduler.
cluster_address = 127.0.0.1:8786
[scheduler]
# Task instances listen for external kill signal (when you clear tasks
# from the CLI or the UI), this defines the frequency at which they should
# listen (in seconds).
job_heartbeat_sec = 5
# The scheduler constantly tries to trigger new tasks (look at the
# scheduler section in the docs for more information). This defines
# how often the scheduler should run (in seconds).
scheduler_heartbeat_sec = 5
# after how much time should the scheduler terminate in seconds
# -1 indicates to run continuously (see also num_runs)
run_duration = -1
# after how much time a new DAGs should be picked up from the filesystem
min_file_process_interval = 0
dag_dir_list_interval = 300
# How often should stats be printed to the logs
print_stats_interval = 30
child_process_log_directory = /home/ec2-user/airflow/logs/scheduler
# Local task jobs periodically heartbeat to the DB. If the job has
# not heartbeat in this many seconds, the scheduler will mark the
# associated task instance as failed and will re-schedule the task.
scheduler_zombie_task_threshold = 300
# Turn off scheduler catchup by setting this to False.
# Default behavior is unchanged and
# Command Line Backfills still work, but the scheduler
# will not do scheduler catchup if this is False,
# however it can be set on a per DAG basis in the
# DAG definition (catchup)
catchup_by_default = True
# This changes the batch size of queries in the scheduling main loop.
# This depends on query length limits and how long you are willing to hold locks.
# 0 for no limit
max_tis_per_query = 0
# Statsd (https://github.com/etsy/statsd) integration settings
statsd_on = False
statsd_host = localhost
statsd_port = 8125
statsd_prefix = airflow
# The scheduler can run multiple threads in parallel to schedule dags.
# This defines how many threads will run.
max_threads = 2
authenticate = False
[ldap]
# set this to ldaps://<your.ldap.server>:<port>
uri =
user_filter = objectClass=*
user_name_attr = uid
group_member_attr = memberOf
superuser_filter =
data_profiler_filter =
bind_user = cn=Manager,dc=example,dc=com
bind_password = insecure
basedn = dc=example,dc=com
cacert = /etc/ca/ldap_ca.crt
search_scope = LEVEL
[mesos]
# Mesos master address which MesosExecutor will connect to.
master = localhost:5050
# The framework name which Airflow scheduler will register itself as on mesos
framework_name = Airflow
# Number of cpu cores required for running one task instance using
# 'airflow run <dag_id> <task_id> <execution_date> --local -p <pickle_id>'
# command on a mesos slave
task_cpu = 1
# Memory in MB required for running one task instance using
# 'airflow run <dag_id> <task_id> <execution_date> --local -p <pickle_id>'
# command on a mesos slave
task_memory = 256
# Enable framework checkpointing for mesos
# See http://mesos.apache.org/documentation/latest/slave-recovery/
checkpoint = False
# Failover timeout in milliseconds.
# When checkpointing is enabled and this option is set, Mesos waits
# until the configured timeout for
# the MesosExecutor framework to re-register after a failover. Mesos
# shuts down running tasks if the
# MesosExecutor framework fails to re-register within this timeframe.
# failover_timeout = 604800
# Enable framework authentication for mesos
# See http://mesos.apache.org/documentation/latest/configuration/
authenticate = False
# Mesos credentials, if authentication is enabled
# default_principal = admin
# default_secret = admin
[kerberos]
ccache = /tmp/airflow_krb5_ccache
# gets augmented with fqdn
principal = airflow
reinit_frequency = 3600
kinit_path = kinit
keytab = airflow.keytab
[github_enterprise]
api_rev = v3
[admin]
# UI to hide sensitive variable fields when set to True
hide_sensitive_variable_fields = True
我不太确定这里发生了什么。我需要在 Celery 或其他任何东西上做额外的设置吗?我也对它如何知道在 AWS 上使用哪个 SQS 队列感到困惑?它自己创建一个新队列还是我需要在 AWS 上创建队列并将 url 放在某个地方?
在这里查看这个问题:
取自那里:
所以替换:
celery_result_backend = postgresql+psycopg2://username:password@192.168.1.2:5432/airflow
类似的东西:
celery_result_backend = db+postgresql://username:password@192.168.1.2:5432/airflow