从 keras 模型中提取特征到数据集中
Extract features into a dataset from keras model
我使用以下代码(由 here 提供)运行 CNN 来训练 MNIST 图像:
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
batch_size = 128
num_classes = 10
epochs = 1
# input image dimensions
img_rows, img_cols = 28, 28
# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
print(model.save_weights('file.txt')) # <<<<<----
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
我的目标是使用 CNN 模型将 MNIST 特征提取到数据集中,我可以将其用作另一个分类器的输入。在这个例子中,我不关心分类操作,因为我需要的只是训练图像的特征。我找到的唯一方法是 save_weights
as:
print(model.save_weights('file.txt'))
如何从 keras 模型中提取特征到数据集中?
训练或加载现有训练模型后,您可以创建另一个模型:
extract = Model(model.inputs, model.layers[-3].output) # Dense(128,...)
features = extract.predict(data)
并使用 .predict
方法 return 来自特定层的向量,在这种情况下,每张图像都将变为 (128,),Dense(128, ... )层。
您还可以使用 functional API 用 2 个输出联合训练这些网络。按照指南进行操作,您会发现可以将模型链接在一起,并有多个输出,每个输出都可能有单独的损失。这将允许您的模型学习共享功能,这些功能对于同时对 MNIST 图像和您的任务进行分类很有用。
我使用以下代码(由 here 提供)运行 CNN 来训练 MNIST 图像:
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
batch_size = 128
num_classes = 10
epochs = 1
# input image dimensions
img_rows, img_cols = 28, 28
# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
print(model.save_weights('file.txt')) # <<<<<----
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
我的目标是使用 CNN 模型将 MNIST 特征提取到数据集中,我可以将其用作另一个分类器的输入。在这个例子中,我不关心分类操作,因为我需要的只是训练图像的特征。我找到的唯一方法是 save_weights
as:
print(model.save_weights('file.txt'))
如何从 keras 模型中提取特征到数据集中?
训练或加载现有训练模型后,您可以创建另一个模型:
extract = Model(model.inputs, model.layers[-3].output) # Dense(128,...)
features = extract.predict(data)
并使用 .predict
方法 return 来自特定层的向量,在这种情况下,每张图像都将变为 (128,),Dense(128, ... )层。
您还可以使用 functional API 用 2 个输出联合训练这些网络。按照指南进行操作,您会发现可以将模型链接在一起,并有多个输出,每个输出都可能有单独的损失。这将允许您的模型学习共享功能,这些功能对于同时对 MNIST 图像和您的任务进行分类很有用。