创建一个曲线图,其中线条按类别着色?

Create a plotly line graph where the line is colored by a category?

我需要创建一个由分类数据列着色的简单绘图折线图。数据是需要按类别着色的时间序列数据。有谁知道如何使用 python plotly api 在简单的折线图或时间序列图中按类别设置颜色类别?

x_axes - 时间数据 y_axes - 从 0' 到 5000' 的深度数据 类别 - on_bottom、off_bottom、钻孔等

输出示例如下图所示,它按上面列出的类别列着色?

Plotly Python - Time Series Graph Example

您需要对数据进行分组并将它们显示在图表中的不同轨迹中。您可以使用 DataFrame Subsetting 来完成此操作。做子集的主线就是这样。

df[df['direction'] == 'Increasing']['AAPL.Open']

df[df['direction'] == 'Increasing'] 部分发生的事情是,我们检查数据帧的 direction 列是否等于 Increasing value/category,如果为真,则dataframe 被子集化,因此只有那些值存在,然后我们可以通过使用 ['AAPL.Open']

部分选择列来选择要绘制的特定列

请参考以下示例,如果您的问题已解决,请告诉我!

代码:

import plotly.offline as py
import plotly.graph_objs as go
from plotly.offline import init_notebook_mode, iplot, plot
from plotly import tools
import pandas as pd
import numpy as np
init_notebook_mode(connected=True)

df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv")

opening_increasing = go.Scatter(
                x=df.Date,
                y=df[df['direction'] == 'Increasing']['AAPL.Open'],
                name = "AAPL Opening Price - Increasing",
                line = dict(color = '#17BECF'),
                opacity = 0.8)

opening_decreasing = go.Scatter(
                x=df.Date,
                y=df[df['direction'] == 'Decreasing']['AAPL.Open'],
                name = "AAPL Opening Price - Decreasing",
                line = dict(color = '#7F7F7F'),
                opacity = 0.8)

data = [opening_increasing, opening_decreasing]

layout = dict(
    title = "Apple Opening Price by Increasing/Decreasing Categories of Direction"
)

fig = dict(data=data, layout=layout)
py.iplot(fig, filename = "Manually Set Range")

输出: