Tensorflow:了解使用和不使用 Dropout Wrapper 的 LSTM 输出

Tensorflow: Understanding LSTM output with and without Dropout Wrapper

import tensorflow as tf
import tensorflow.contrib.eager as tfe

tfe.enable_eager_execution()

x = tf.range(1, 11, dtype=tf.float32)
x = tf.reshape(x, (5, 1, 2))

cell = tf.contrib.rnn.LSTMCell(10)
initial_state = cell.zero_state(5, dtype=tf.float32)

y1, _ = tf.nn.dynamic_rnn(cell, x, dtype=tf.float32, initial_state=initial_state)

y2, _ = tf.nn.dynamic_rnn(
    tf.contrib.rnn.DropoutWrapper(cell, input_keep_prob=1.0, output_keep_prob=0.5, state_keep_prob=1.0),
    x,
    dtype=tf.float32,
    initial_state=initial_state)

我正在使用 Tensorflow 1.8.0。

我预计 y2 的输出与 y1 相似,因为 y2 使用与 y1 相同的 LSTM 单元,只是它通过一个丢弃层也是如此。由于 dropout 仅应用于 LSTM 单元的输出,我认为 y2 的值将与 y1 相同,除了这里和那里的几个 0。但这就是我得到的 y1:

<tf.Tensor: id=5540, shape=(5, 1, 10), dtype=float32, numpy=
array([[[-4.2897560e-02,  1.9367093e-01, -1.1827464e-01, -1.2339889e-01,
          1.3408028e-01,  1.3082971e-02, -2.4622230e-02, -1.5669680e-01,
          1.1127964e-01, -5.3087018e-02]],
       [[-7.1379542e-02,  4.5163053e-01, -1.6180833e-01, -1.3278724e-01,
          2.2819680e-01, -4.8406985e-02, -8.2188733e-03, -2.5466946e-01,
          2.8928292e-01, -7.3916554e-02]],
       [[-5.9056517e-02,  6.1984581e-01, -1.9882108e-01, -9.6297756e-02,
          2.5009862e-01, -8.0139056e-02, -2.2850712e-03, -2.7935350e-01,
          4.4566888e-01, -7.8914449e-02]],
       [[-3.8571563e-02,  6.9930458e-01, -2.2960691e-01, -6.1545946e-02,
          2.5194761e-01, -7.9383254e-02, -5.4560765e-04, -2.7542716e-01,
          5.5587584e-01, -7.3568568e-02]],
       [[-2.2481792e-02,  7.3400390e-01, -2.5636050e-01, -3.7012421e-02,
          2.4684550e-01, -6.3926049e-02, -1.1120128e-04, -2.5999820e-01,
          6.2801009e-01, -6.3132115e-02]]], dtype=float32)>

y2:

<tf.Tensor: id=5609, shape=(5, 1, 10), dtype=float32, numpy=
array([[[-0.08579512,  0.38734186, -0.23654927, -0.24679779,
          0.        ,  0.02616594, -0.        , -0.3133936 ,
          0.        , -0.        ]],
       [[-0.14275908,  0.        , -0.32361665, -0.26557449,
          0.        , -0.        , -0.        , -0.5093389 ,
          0.        , -0.        ]],
       [[-0.11811303,  0.        , -0.39764217, -0.        ,
          0.50019723, -0.16027811, -0.00457014, -0.        ,
          0.89133775, -0.        ]],
       [[-0.        ,  0.        , -0.45921382, -0.12309189,
          0.        , -0.        , -0.        , -0.        ,
          1.1117517 , -0.14713714]],
       [[-0.        ,  0.        , -0.        , -0.07402484,
          0.        , -0.        , -0.        , -0.5199964 ,
          1.2560202 , -0.        ]]], dtype=float32)>

y2中的非零值与y1中相应位置的值完全不同。

这是一个错误还是我对在 LSTM 单元的输出上应用 dropout 意味着什么有错误的想法?

y2 is equivalent to y1_drop/0.5.

dropout 应用于 y1 时,保留概率为 p,然后将输出除以 p

如果您检查两个矩阵,y2 只不过是随机丢弃一半输入,然后将其缩放 0.5。

引自 Section 10Dropout paper,

"We described dropout as a method where we retain units with probability p at training time and scale down the weights by multiplying them by a factor of p at test time. Another way to achieve the same effect is to scale up the retained activations by multiplying by 1/p at training time and not modifying the weights at test time. These methods are equivalent with appropriate scaling of the learning rate and weight initializations at each layer."

参考: Dropout:一种防止神经网络的简单方法 过拟合