R将第二数据聚合到分钟更有效
R aggregate second data to minutes more efficient
我有一个 data.table、allData
,其中包含来自不同夜晚的大约每 (POSIXct) 秒的数据。然而,有些晚上是同一天,因为数据是从不同的人那里收集的,所以我有一个 nightNo 列作为每个不同晚上的 id。
timestamp nightNo data1 data2
2018-10-19 19:15:00 1 1 7
2018-10-19 19:15:01 1 2 8
2018-10-19 19:15:02 1 3 9
2018-10-19 18:10:22 2 4 10
2018-10-19 18:10:23 2 5 11
2018-10-19 18:10:24 2 6 12
我想将数据聚合到分钟(每晚)并使用 this question 我想出了以下代码:
aggregate_minute <- function(df){
df %>%
group_by(timestamp = cut(timestamp, breaks= "1 min")) %>%
summarise(data1= mean(data1), data2= mean(data2)) %>%
as.data.table()
}
allData <- allData[, aggregate_minute(allData), by=nightNo]
但是我的 data.table 相当大,而且这段代码不够快。有没有更有效的方法来解决这个问题?
allData <- data.table(timestamp = c(rep(Sys.time(), 3), rep(Sys.time() + 320, 3)),
nightNo = rep(1:2, c(3, 3)),
data1 = 1:6,
data2 = 7:12)
timestamp nightNo data1 data2
1: 2018-06-14 10:43:11 1 1 7
2: 2018-06-14 10:43:11 1 2 8
3: 2018-06-14 10:43:11 1 3 9
4: 2018-06-14 10:48:31 2 4 10
5: 2018-06-14 10:48:31 2 5 11
6: 2018-06-14 10:48:31 2 6 12
allData[, .(data1 = mean(data1), data2 = mean(data2)), by = .(nightNo, timestamp = cut(timestamp, breaks= "1 min"))]
nightNo timestamp data1 data2
1: 1 2018-06-14 10:43:00 2 8
2: 2 2018-06-14 10:48:00 5 11
> system.time(replicate(500, allData[, aggregate_minute(allData), by=nightNo]))
user system elapsed
3.25 0.02 3.31
> system.time(replicate(500, allData[, .(data1 = mean(data1), data2 = mean(data2)), by = .(nightNo, timestamp = cut(timestamp, breaks= "1 min"))]))
user system elapsed
1.02 0.04 1.06
您可以使用 lubridate
到 'round' 日期,然后使用 data.table
聚合列。
library(data.table)
library(lubridate)
可重现的数据:
text <- "timestamp nightNo data1 data2
'2018-10-19 19:15:00' 1 1 7
'2018-10-19 19:15:01' 1 2 8
'2018-10-19 19:15:02' 1 3 9
'2018-10-19 18:10:22' 2 4 10
'2018-10-19 18:10:23' 2 5 11
'2018-10-19 18:10:24' 2 6 12"
allData <- read.table(text = text, header = TRUE, stringsAsFactors = FALSE)
创建data.table
:
setDT(allData)
创建时间戳并将其下限到最近的分钟:
allData[, timestamp := floor_date(ymd_hms(timestamp), "minutes")]
将整数列的类型更改为 numeric
:
allData[, ':='(data1 = as.numeric(data1),
data2 = as.numeric(data2))]
用 nightNo
组的方式替换数据列:
allData[, ':='(data1 = mean(data1),
data2 = mean(data2)),
by = nightNo]
结果是:
timestamp nightNo data1 data2
1: 2018-10-19 19:15:00 1 2 8
2: 2018-10-19 19:15:00 1 2 8
3: 2018-10-19 19:15:00 1 2 8
4: 2018-10-19 18:10:00 2 5 11
5: 2018-10-19 18:10:00 2 5 11
6: 2018-10-19 18:10:00 2 5 11
我有一个 data.table、allData
,其中包含来自不同夜晚的大约每 (POSIXct) 秒的数据。然而,有些晚上是同一天,因为数据是从不同的人那里收集的,所以我有一个 nightNo 列作为每个不同晚上的 id。
timestamp nightNo data1 data2
2018-10-19 19:15:00 1 1 7
2018-10-19 19:15:01 1 2 8
2018-10-19 19:15:02 1 3 9
2018-10-19 18:10:22 2 4 10
2018-10-19 18:10:23 2 5 11
2018-10-19 18:10:24 2 6 12
我想将数据聚合到分钟(每晚)并使用 this question 我想出了以下代码:
aggregate_minute <- function(df){
df %>%
group_by(timestamp = cut(timestamp, breaks= "1 min")) %>%
summarise(data1= mean(data1), data2= mean(data2)) %>%
as.data.table()
}
allData <- allData[, aggregate_minute(allData), by=nightNo]
但是我的 data.table 相当大,而且这段代码不够快。有没有更有效的方法来解决这个问题?
allData <- data.table(timestamp = c(rep(Sys.time(), 3), rep(Sys.time() + 320, 3)),
nightNo = rep(1:2, c(3, 3)),
data1 = 1:6,
data2 = 7:12)
timestamp nightNo data1 data2
1: 2018-06-14 10:43:11 1 1 7
2: 2018-06-14 10:43:11 1 2 8
3: 2018-06-14 10:43:11 1 3 9
4: 2018-06-14 10:48:31 2 4 10
5: 2018-06-14 10:48:31 2 5 11
6: 2018-06-14 10:48:31 2 6 12
allData[, .(data1 = mean(data1), data2 = mean(data2)), by = .(nightNo, timestamp = cut(timestamp, breaks= "1 min"))]
nightNo timestamp data1 data2
1: 1 2018-06-14 10:43:00 2 8
2: 2 2018-06-14 10:48:00 5 11
> system.time(replicate(500, allData[, aggregate_minute(allData), by=nightNo]))
user system elapsed
3.25 0.02 3.31
> system.time(replicate(500, allData[, .(data1 = mean(data1), data2 = mean(data2)), by = .(nightNo, timestamp = cut(timestamp, breaks= "1 min"))]))
user system elapsed
1.02 0.04 1.06
您可以使用 lubridate
到 'round' 日期,然后使用 data.table
聚合列。
library(data.table)
library(lubridate)
可重现的数据:
text <- "timestamp nightNo data1 data2
'2018-10-19 19:15:00' 1 1 7
'2018-10-19 19:15:01' 1 2 8
'2018-10-19 19:15:02' 1 3 9
'2018-10-19 18:10:22' 2 4 10
'2018-10-19 18:10:23' 2 5 11
'2018-10-19 18:10:24' 2 6 12"
allData <- read.table(text = text, header = TRUE, stringsAsFactors = FALSE)
创建data.table
:
setDT(allData)
创建时间戳并将其下限到最近的分钟:
allData[, timestamp := floor_date(ymd_hms(timestamp), "minutes")]
将整数列的类型更改为 numeric
:
allData[, ':='(data1 = as.numeric(data1),
data2 = as.numeric(data2))]
用 nightNo
组的方式替换数据列:
allData[, ':='(data1 = mean(data1),
data2 = mean(data2)),
by = nightNo]
结果是:
timestamp nightNo data1 data2
1: 2018-10-19 19:15:00 1 2 8
2: 2018-10-19 19:15:00 1 2 8
3: 2018-10-19 19:15:00 1 2 8
4: 2018-10-19 18:10:00 2 5 11
5: 2018-10-19 18:10:00 2 5 11
6: 2018-10-19 18:10:00 2 5 11