如何处理此类错误?
How to handle such errors?
companies = pd.read_csv("http://www.richard-muir.com/data/public/csv/CompaniesRevenueEmployees.csv", index_col = 0)
companies.head()
我收到此错误,请建议应该尝试哪些方法。
"utf-8' codec can't decode byte 0xb7 in position 7"
下载文件并在 notepad++
中打开显示它是 ansi 编码的。如果您使用的是 windows 系统,这应该可以修复它:
import pandas as pd
url = "http://www.richard-muir.com/data/public/csv/CompaniesRevenueEmployees.csv"
companies = pd.read_csv(url, index_col = 0, encoding='ansi')
print(companies)
如果不是(在 windows),您需要研究如何将 ansi 编码的文本转换为您可以阅读的内容。
参见:https://docs.python.org/3/library/codecs.html#standard-encodings
输出:
Name Industry \
0 Walmart Retail
1 Sinopec Group Oil and gas
2 China National Petroleum Corporation Oil and gas
... ... ...
47 Hewlett Packard Enterprise Electronics
48 Tata Group Conglomerate
Revenue (USD billions) Employees
0 482 2200000
1 455 358571
2 428 1636532
... ... ...
47 111 302000
48 108 600000
尝试在 macOS 上编码为 'latin1'
。
companies = pd.read_csv("http://www.richardmuir.com/data/public/csv/CompaniesRevenueEmployees.csv",
index_col=0,
encoding='latin1')
companies = pd.read_csv("http://www.richard-muir.com/data/public/csv/CompaniesRevenueEmployees.csv", index_col = 0)
companies.head()
我收到此错误,请建议应该尝试哪些方法。
"utf-8' codec can't decode byte 0xb7 in position 7"
下载文件并在 notepad++
中打开显示它是 ansi 编码的。如果您使用的是 windows 系统,这应该可以修复它:
import pandas as pd
url = "http://www.richard-muir.com/data/public/csv/CompaniesRevenueEmployees.csv"
companies = pd.read_csv(url, index_col = 0, encoding='ansi')
print(companies)
如果不是(在 windows),您需要研究如何将 ansi 编码的文本转换为您可以阅读的内容。
参见:https://docs.python.org/3/library/codecs.html#standard-encodings
输出:
Name Industry \
0 Walmart Retail
1 Sinopec Group Oil and gas
2 China National Petroleum Corporation Oil and gas
... ... ...
47 Hewlett Packard Enterprise Electronics
48 Tata Group Conglomerate
Revenue (USD billions) Employees
0 482 2200000
1 455 358571
2 428 1636532
... ... ...
47 111 302000
48 108 600000
尝试在 macOS 上编码为 'latin1'
。
companies = pd.read_csv("http://www.richardmuir.com/data/public/csv/CompaniesRevenueEmployees.csv",
index_col=0,
encoding='latin1')