如何为 3d 卷积构造 sobel 滤波器?
How to construct a sobel filter for a 3d convolution?
在我的代码片段中,我想构建 Sobel 过滤器,它分别应用于图像 (RGB) 的每一层,最后卡在一起(同样是 rgb,但已过滤)。
我不知道如何构建具有输入形状 [filter_depth, filter_height, filter_width, in_channels, out_channesl]
的 Sobel 滤波器,在我的例子中是这样的:
sobel_x_filter = tf.reshape(sobel_x, [1, 3, 3, 3, 3])
整个代码如下所示:
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
im0 = plt.imread('../../data/im0.png') # already divided by 255
sobel_x = tf.constant([
[[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]],
[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]],
[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]],
[[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]],
[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]],
[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]],
[[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]],
[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]],
[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]]], tf.float32) # is this correct?
sobel_x_filter = tf.reshape(sobel_x, [1, 3, 3, 3, 3])
image = tf.placeholder(tf.float32, shape=[496, 718, 3])
image_resized = tf.expand_dims(tf.expand_dims(image, 0), 0)
filters_x = tf.nn.conv3d(image_resized, filter=sobel_x_filter, strides=[1,1,1,1,1],
padding='SAME', data_format='NDHWC')
with tf.Session('') as sess:
sess.run([tf.global_variables_initializer(), tf.local_variables_initializer()])
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
feed_dict = {image: im0}
img = filters_x.eval(feed_dict=feed_dict)
plt.figure(0), plt.title('red'), plt.imshow(np.squeeze(img[...,0])),
plt.figure(1), plt.title('green'), plt.imshow(np.squeeze(img[...,1])),
plt.figure(2), plt.title('blue'), plt.imshow(np.squeeze(img[...,2]))
您可以使用 tf.nn.depthwise_conv2d
:
sobel_x = tf.constant([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], tf.float32)
kernel = tf.tile(sobel_x[...,None],[1,1,3])[...,None]
conv = tf.nn.depthwise_conv2d(image[None,...], kernel,strides=[1,1,1,1],padding='SAME')
与tf.nn.conv3d
:
im = tf.expand_dims(tf.transpose(image, [2, 0, 1]),0)
sobel_x = tf.constant([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], tf.float32)
sobel_x_filter = tf.reshape(sobel_x, [1, 3, 3, 1, 1])
conv = tf.transpose(tf.squeeze(tf.nn.conv3d(im[...,None], sobel_x_filter,
strides=[1,1,1,1,1],padding='SAME')), [1,2,0])
在我的代码片段中,我想构建 Sobel 过滤器,它分别应用于图像 (RGB) 的每一层,最后卡在一起(同样是 rgb,但已过滤)。
我不知道如何构建具有输入形状 [filter_depth, filter_height, filter_width, in_channels, out_channesl]
的 Sobel 滤波器,在我的例子中是这样的:
sobel_x_filter = tf.reshape(sobel_x, [1, 3, 3, 3, 3])
整个代码如下所示:
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
im0 = plt.imread('../../data/im0.png') # already divided by 255
sobel_x = tf.constant([
[[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]],
[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]],
[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]],
[[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]],
[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]],
[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]],
[[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]],
[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]],
[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]]], tf.float32) # is this correct?
sobel_x_filter = tf.reshape(sobel_x, [1, 3, 3, 3, 3])
image = tf.placeholder(tf.float32, shape=[496, 718, 3])
image_resized = tf.expand_dims(tf.expand_dims(image, 0), 0)
filters_x = tf.nn.conv3d(image_resized, filter=sobel_x_filter, strides=[1,1,1,1,1],
padding='SAME', data_format='NDHWC')
with tf.Session('') as sess:
sess.run([tf.global_variables_initializer(), tf.local_variables_initializer()])
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
feed_dict = {image: im0}
img = filters_x.eval(feed_dict=feed_dict)
plt.figure(0), plt.title('red'), plt.imshow(np.squeeze(img[...,0])),
plt.figure(1), plt.title('green'), plt.imshow(np.squeeze(img[...,1])),
plt.figure(2), plt.title('blue'), plt.imshow(np.squeeze(img[...,2]))
您可以使用 tf.nn.depthwise_conv2d
:
sobel_x = tf.constant([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], tf.float32)
kernel = tf.tile(sobel_x[...,None],[1,1,3])[...,None]
conv = tf.nn.depthwise_conv2d(image[None,...], kernel,strides=[1,1,1,1],padding='SAME')
与tf.nn.conv3d
:
im = tf.expand_dims(tf.transpose(image, [2, 0, 1]),0)
sobel_x = tf.constant([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], tf.float32)
sobel_x_filter = tf.reshape(sobel_x, [1, 3, 3, 1, 1])
conv = tf.transpose(tf.squeeze(tf.nn.conv3d(im[...,None], sobel_x_filter,
strides=[1,1,1,1,1],padding='SAME')), [1,2,0])