python cv2 VideoCapture 在 wamp 服务器上不工作

python cv2 VideoCapture not working on wamp server

背景 - 我的桌面上安装了 python 和所需的脚本。
我正在开发人脸识别WebApp.
它从 Command Line 开始工作正常,但是当我尝试从 localhost wampserver[= 上 运行 它时34=],webcam灯亮,但没有webcamwindow出现,页面开始加载无限时间。

这里是数据训练的代码

#!C:\Users\Gurminders\AppData\Local\Programs\Python\Python35-32\python.exe
import cv2
import os

def assure_path_exists(path):
    dir = os.path.dirname(path)
    if not os.path.exists(dir):
        os.makedirs(dir)

# Start capturing video 
vid_cam = cv2.VideoCapture(0)

# Detect object in video stream using Haarcascade Frontal Face
face_detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

# For each person, one face id
face_id = input('Please Enter Casual ID --> ')

# Initialize sample face image
count = 0

assure_path_exists("dataset/")

# Start looping
while(True):

    # Capture video frame
    _, image_frame = vid_cam.read()

    # Convert frame to grayscale
    gray = cv2.cvtColor(image_frame, cv2.COLOR_BGR2GRAY)

    # Detect frames of different sizes, list of faces rectangles
    faces = face_detector.detectMultiScale(gray, 1.3, 5)

    # Loops for each faces
    for (x,y,w,h) in faces:

        # Crop the image frame into rectangle
        cv2.rectangle(image_frame, (x,y), (x+w,y+h), (255,0,0), 2)

        # Increment sample face image
        count += 1

        # Save the captured image into the datasets folder
        cv2.imwrite("dataset/User." + str(face_id) + '.' + str(count) + ".jpg", gray[y:y+h,x:x+w])

        # Display the video frame, with bounded rectangle on the person's face
        cv2.imshow('frame', image_frame)

    # To stop taking video, press 'q' for at least 100ms
    if cv2.waitKey(100) & 0xFF == ord('q'):
        break

    # If image taken reach 100, stop taking video
    elif count>100:
        break

# Stop video
vid_cam.release()

# Close all started windows
cv2.destroyAllWindows()

它在命令行上运行良好,但在 wampserver.[=19= 上的 localhost 上运行不正常]

我解决了这个问题 我替换了

if cv2.waitKey(100) & 0xFF == ord('q'):

if cv2.waitKey(5000):

这里5000是5秒