我可以在 `coqtop -nois` 下使用策略吗?
Can I use a tactics under `coqtop -nois`?
就像的op一样,我在-nois
下重新开发Coq.Init.Prelude
来练习。
我想用战术,但是没有用
我尝试了 Declare ML Module "ltac_plugin".
但没有用。
Welcome to Coq v8.8 (eccf1d50b020e87b4d19d0bda43361e1e82d01b1)
Coq < Declare ML Module "ltac_plugin".
[Loading ML file ltac_plugin.cmxs ... done]
Coq < Goal forall A:Prop, forall proof:A, A.
1 subgoal
============================
forall (A : Prop) (_ : A), A
Unnamed_thm < intro.
Toplevel input, characters 0-5:
> intro.
> ^^^^^
Error: Syntax error: illegal begin of vernac.
您还需要Set Default Proof Mode "Classic"
to have access to the standard tactics. This option is currently undocumented。
$ rlwrap coqtop -nois
Welcome to Coq 8.8.0 (May 2018)
Coq < Declare ML Module "ltac_plugin".
[Loading ML file ltac_plugin.cmxs ... done]
Coq < Set Default Proof Mode "Classic".
Coq < Goal forall A:Prop, forall proof:A, A.
1 subgoal
============================
forall (A : Prop) (_ : A), A
Unnamed_thm < intros.
1 subgoal
A : Prop
proof : A
============================
A
Unnamed_thm < assumption.
No more subgoals.
Unnamed_thm < Qed.
Unnamed_thm is defined
就像-nois
下重新开发Coq.Init.Prelude
来练习。
我想用战术,但是没有用
我尝试了 Declare ML Module "ltac_plugin".
但没有用。
Welcome to Coq v8.8 (eccf1d50b020e87b4d19d0bda43361e1e82d01b1)
Coq < Declare ML Module "ltac_plugin".
[Loading ML file ltac_plugin.cmxs ... done]
Coq < Goal forall A:Prop, forall proof:A, A.
1 subgoal
============================
forall (A : Prop) (_ : A), A
Unnamed_thm < intro.
Toplevel input, characters 0-5:
> intro.
> ^^^^^
Error: Syntax error: illegal begin of vernac.
您还需要Set Default Proof Mode "Classic"
to have access to the standard tactics. This option is currently undocumented。
$ rlwrap coqtop -nois
Welcome to Coq 8.8.0 (May 2018)
Coq < Declare ML Module "ltac_plugin".
[Loading ML file ltac_plugin.cmxs ... done]
Coq < Set Default Proof Mode "Classic".
Coq < Goal forall A:Prop, forall proof:A, A.
1 subgoal
============================
forall (A : Prop) (_ : A), A
Unnamed_thm < intros.
1 subgoal
A : Prop
proof : A
============================
A
Unnamed_thm < assumption.
No more subgoals.
Unnamed_thm < Qed.
Unnamed_thm is defined