如何在 coq 中证明 StronglySorted 列表 consing?
How to prove StronglySorted list consing in coq?
我正在尝试在 Coq 中制作一个 Hanoi 塔作为学习练习。经过数小时无果而终的尝试后,我在第一个证明中坚持了最后一个目标。
能否解释一下我的程序失败的原因,以及如何更正它?
编辑:回头看代码,好像要先证明StronglySorted le (l:list nat)
才能证明ordered_stacking
,不是吗?
Require Import List.
Require Import Arith.
Require Import Coq.Sorting.Sorting.
Definition stack_disk :=
fun (n:nat) (l:list nat) =>
match l with
| nil => n::nil
| n'::l' =>
if n' <? n
then n::l
else l
end.
Eval compute in (stack_disk 2 (1::0::nil)).
Eval compute in (stack_disk 2 (2::1::0::nil)).
Lemma ordered_stacking: forall (n:nat) (l:list nat),
StronglySorted le l -> StronglySorted le (stack_disk n l) -> StronglySorted le (n::l).
Proof.
intros n l H.
induction l as [|hl tl];simpl;auto.
destruct (hl <? n).
auto.
constructor.
apply H.
输出:
1 subgoal
n, hl : nat
tl : list nat
H : StronglySorted le (hl :: tl)
IHtl : StronglySorted le tl ->
StronglySorted le (stack_disk n tl) -> StronglySorted le (n :: tl)
H0 : StronglySorted le (hl :: tl)
______________________________________(1/1)
Forall (le n) (hl :: tl)
问题是你没有记录 n <= hl
在破坏那个布尔值之后的事实。这是一个解决方案:
Require Import List.
Require Import Arith.
Require Import Coq.Sorting.Sorting.
Definition stack_disk :=
fun (n:nat) (l:list nat) =>
match l with
| nil => n::nil
| n'::l' =>
if n' <? n
then n::l
else l
end.
Lemma ordered_stacking: forall (n:nat) (l:list nat),
StronglySorted le l -> StronglySorted le (stack_disk n l) -> StronglySorted le (n::l).
Proof.
intros n [|m l].
- intros _ _; repeat constructor.
- simpl. intros H1 H2.
destruct (Nat.ltb_spec m n); trivial.
constructor; trivial.
apply StronglySorted_inv in H1.
destruct H1 as [_ H1].
constructor; trivial.
revert H1; apply Forall_impl.
now intros p; apply Nat.le_trans.
Qed.
我正在尝试在 Coq 中制作一个 Hanoi 塔作为学习练习。经过数小时无果而终的尝试后,我在第一个证明中坚持了最后一个目标。
能否解释一下我的程序失败的原因,以及如何更正它?
编辑:回头看代码,好像要先证明StronglySorted le (l:list nat)
才能证明ordered_stacking
,不是吗?
Require Import List.
Require Import Arith.
Require Import Coq.Sorting.Sorting.
Definition stack_disk :=
fun (n:nat) (l:list nat) =>
match l with
| nil => n::nil
| n'::l' =>
if n' <? n
then n::l
else l
end.
Eval compute in (stack_disk 2 (1::0::nil)).
Eval compute in (stack_disk 2 (2::1::0::nil)).
Lemma ordered_stacking: forall (n:nat) (l:list nat),
StronglySorted le l -> StronglySorted le (stack_disk n l) -> StronglySorted le (n::l).
Proof.
intros n l H.
induction l as [|hl tl];simpl;auto.
destruct (hl <? n).
auto.
constructor.
apply H.
输出:
1 subgoal
n, hl : nat
tl : list nat
H : StronglySorted le (hl :: tl)
IHtl : StronglySorted le tl ->
StronglySorted le (stack_disk n tl) -> StronglySorted le (n :: tl)
H0 : StronglySorted le (hl :: tl)
______________________________________(1/1)
Forall (le n) (hl :: tl)
问题是你没有记录 n <= hl
在破坏那个布尔值之后的事实。这是一个解决方案:
Require Import List.
Require Import Arith.
Require Import Coq.Sorting.Sorting.
Definition stack_disk :=
fun (n:nat) (l:list nat) =>
match l with
| nil => n::nil
| n'::l' =>
if n' <? n
then n::l
else l
end.
Lemma ordered_stacking: forall (n:nat) (l:list nat),
StronglySorted le l -> StronglySorted le (stack_disk n l) -> StronglySorted le (n::l).
Proof.
intros n [|m l].
- intros _ _; repeat constructor.
- simpl. intros H1 H2.
destruct (Nat.ltb_spec m n); trivial.
constructor; trivial.
apply StronglySorted_inv in H1.
destruct H1 as [_ H1].
constructor; trivial.
revert H1; apply Forall_impl.
now intros p; apply Nat.le_trans.
Qed.