使用一列中的重复值删除 pandas 数据框中的整行
using duplicates values from one column to remove entire row in pandas dataframe
我在下面上传了.csv文件里的数据link
在这个文件中,我有以下列:
Team Group Model SimStage Points GpWinner GpRunnerup 3rd 4th
团队列中会有重复项。另一列是 SimStage。 Simstage 有一系列包含从 0 到 N 的数据(在本例中为 0 到 4)
我想在每个 Simstage 值处为每个团队保留一行(即,其余部分将被删除)。当我们删除时,将为每个团队和 SimStage 删除列 Points 中具有较低值的重复行。
由于单靠文字解释起来略显困难,所以我在这里附上了一张图片。
在这张图片中,红色框突出显示的行将被删除。
我用了df.duplicates()
但是没用
您似乎只想保留 'Points' 列中的最大值。因此,在pandas
中使用first
聚合函数
创建数据框并调用它 df
data = {'Team': {0: 'Brazil', 1: 'Brazil', 2: 'Brazil', 3: 'Brazil', 4: 'Brazil', 5: 'Brazil', 6: 'Brazil', 7: 'Brazil', 8: 'Brazil', 9: 'Brazil'},
'Group': {0: 'Group E', 1: 'Group E', 2: 'Group E', 3: 'Group E', 4: 'Group E', 5: 'Group E', 6: 'Group E', 7: 'Group E', 8: 'Group E', 9: 'Group E'},
'Model': {0: 'ELO', 1: 'ELO', 2: 'ELO', 3: 'ELO', 4: 'ELO', 5: 'ELO', 6: 'ELO', 7: 'ELO', 8: 'ELO', 9: 'ELO'},
'SimStage': {0: 0, 1: 0, 2: 1, 3: 1, 4: 2, 5: 2, 6: 3, 7: 3, 8: 4, 9: 4},
'Points': {0: 4, 1: 4, 2: 4, 3: 4, 4: 4, 5: 1, 6: 2, 7: 4, 8: 4, 9: 1},
'GpWinner': {0: 0.2, 1: 0.2, 2: 0.2, 3: 0.2, 4: 0.2, 5: 0.0, 6: 0.2, 7: 0.2, 8: 0.2, 9: 0.0},
'GpRunnerup': {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0, 5: 0.2, 6: 0.0, 7: 0.0, 8: 0.0, 9: 0.2},
'3rd': {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0},
'4th': {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0}}
df = pd.DataFrame(data)
# To be able to output the dataframe in your original order
columns_order = ['Team', 'Group', 'Model', 'SimStage', 'Points', 'GpWinner', 'GpRunnerup', '3rd', '4th']
方法一
# Sort the values by 'Points' descending and 'SimStage' ascending
df = df.sort_values('Points', ascending=False)
df = df.sort_values('SimStage')
# Group the columns by the necessary columns
df = df.groupby(['Team', 'SimStage'], as_index=False).agg('first')
# Output the dataframe in the orginal order
df[columns_order]
Out[]:
Team Group Model SimStage Points GpWinner GpRunnerup 3rd 4th
0 Brazil Group E ELO 0 4 0.2 0.0 0 0
1 Brazil Group E ELO 1 4 0.2 0.0 0 0
2 Brazil Group E ELO 2 4 0.2 0.0 0 0
3 Brazil Group E ELO 3 4 0.2 0.0 0 0
4 Brazil Group E ELO 4 4 0.2 0.0 0 0
方法二
df.sort_values('Points', ascending=False).drop_duplicates(['Team', 'SimStage'])[columns_order]
Out[]:
Team Group Model SimStage Points GpWinner GpRunnerup 3rd 4th
0 Brazil Group E ELO 0 4 0.2 0.0 0 0
2 Brazil Group E ELO 1 4 0.2 0.0 0 0
4 Brazil Group E ELO 2 4 0.2 0.0 0 0
7 Brazil Group E ELO 3 4 0.2 0.0 0 0
8 Brazil Group E ELO 4 4 0.2 0.0 0 0
我只是根据您在此处的数据集使用 Team、SimStage 和 Points 创建一个迷你数据集。
import pandas as pd
namesDf = pd.DataFrame()
namesDf['Team'] = ['Brazil', 'Brazil', 'Brazil', 'Brazil', 'Brazil', 'Brazil', 'Brazil', 'Brazil', 'Brazil', 'Brazil']
namesDf['SimStage'] = [0, 0, 1, 1, 2, 2, 3, 3, 4, 4]
namesDf['Points'] = [4, 4, 4, 4, 4, 1, 2, 4, 4, 1]
现在,对于每个 Sim 阶段,您都需要最高点值。所以,我首先将它们按团队和模拟阶段分组,然后按点对它们进行排序。
namesDf = namesDf.groupby(['Team', 'SimStage'], as_index = False).apply(lambda x: x.sort_values(['Points'], ascending = False)).reset_index(drop = True)
这将使我的数据框看起来像这样,请注意 Sim Stage 中值 3 的变化:
Team SimStage Points
0 Brazil 0 4
1 Brazil 0 4
2 Brazil 1 4
3 Brazil 1 4
4 Brazil 2 4
5 Brazil 2 1
6 Brazil 3 4
7 Brazil 3 2
8 Brazil 4 4
9 Brazil 4 1
现在我通过保留每个团队和模拟阶段的第一个实例来删除重复项。
namesDf = namesDf.drop_duplicates(subset=['Team', 'SimStage'], keep = 'first')
最终结果:
Team SimStage Points
0 Brazil 0 4
2 Brazil 1 4
4 Brazil 2 4
6 Brazil 3 4
8 Brazil 4 4
我在下面上传了.csv文件里的数据link
在这个文件中,我有以下列:
Team Group Model SimStage Points GpWinner GpRunnerup 3rd 4th
团队列中会有重复项。另一列是 SimStage。 Simstage 有一系列包含从 0 到 N 的数据(在本例中为 0 到 4)
我想在每个 Simstage 值处为每个团队保留一行(即,其余部分将被删除)。当我们删除时,将为每个团队和 SimStage 删除列 Points 中具有较低值的重复行。 由于单靠文字解释起来略显困难,所以我在这里附上了一张图片。
在这张图片中,红色框突出显示的行将被删除。
我用了df.duplicates()
但是没用
您似乎只想保留 'Points' 列中的最大值。因此,在pandas
中使用first
聚合函数
创建数据框并调用它 df
data = {'Team': {0: 'Brazil', 1: 'Brazil', 2: 'Brazil', 3: 'Brazil', 4: 'Brazil', 5: 'Brazil', 6: 'Brazil', 7: 'Brazil', 8: 'Brazil', 9: 'Brazil'},
'Group': {0: 'Group E', 1: 'Group E', 2: 'Group E', 3: 'Group E', 4: 'Group E', 5: 'Group E', 6: 'Group E', 7: 'Group E', 8: 'Group E', 9: 'Group E'},
'Model': {0: 'ELO', 1: 'ELO', 2: 'ELO', 3: 'ELO', 4: 'ELO', 5: 'ELO', 6: 'ELO', 7: 'ELO', 8: 'ELO', 9: 'ELO'},
'SimStage': {0: 0, 1: 0, 2: 1, 3: 1, 4: 2, 5: 2, 6: 3, 7: 3, 8: 4, 9: 4},
'Points': {0: 4, 1: 4, 2: 4, 3: 4, 4: 4, 5: 1, 6: 2, 7: 4, 8: 4, 9: 1},
'GpWinner': {0: 0.2, 1: 0.2, 2: 0.2, 3: 0.2, 4: 0.2, 5: 0.0, 6: 0.2, 7: 0.2, 8: 0.2, 9: 0.0},
'GpRunnerup': {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0, 5: 0.2, 6: 0.0, 7: 0.0, 8: 0.0, 9: 0.2},
'3rd': {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0},
'4th': {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0}}
df = pd.DataFrame(data)
# To be able to output the dataframe in your original order
columns_order = ['Team', 'Group', 'Model', 'SimStage', 'Points', 'GpWinner', 'GpRunnerup', '3rd', '4th']
方法一
# Sort the values by 'Points' descending and 'SimStage' ascending
df = df.sort_values('Points', ascending=False)
df = df.sort_values('SimStage')
# Group the columns by the necessary columns
df = df.groupby(['Team', 'SimStage'], as_index=False).agg('first')
# Output the dataframe in the orginal order
df[columns_order]
Out[]:
Team Group Model SimStage Points GpWinner GpRunnerup 3rd 4th
0 Brazil Group E ELO 0 4 0.2 0.0 0 0
1 Brazil Group E ELO 1 4 0.2 0.0 0 0
2 Brazil Group E ELO 2 4 0.2 0.0 0 0
3 Brazil Group E ELO 3 4 0.2 0.0 0 0
4 Brazil Group E ELO 4 4 0.2 0.0 0 0
方法二
df.sort_values('Points', ascending=False).drop_duplicates(['Team', 'SimStage'])[columns_order]
Out[]:
Team Group Model SimStage Points GpWinner GpRunnerup 3rd 4th
0 Brazil Group E ELO 0 4 0.2 0.0 0 0
2 Brazil Group E ELO 1 4 0.2 0.0 0 0
4 Brazil Group E ELO 2 4 0.2 0.0 0 0
7 Brazil Group E ELO 3 4 0.2 0.0 0 0
8 Brazil Group E ELO 4 4 0.2 0.0 0 0
我只是根据您在此处的数据集使用 Team、SimStage 和 Points 创建一个迷你数据集。
import pandas as pd
namesDf = pd.DataFrame()
namesDf['Team'] = ['Brazil', 'Brazil', 'Brazil', 'Brazil', 'Brazil', 'Brazil', 'Brazil', 'Brazil', 'Brazil', 'Brazil']
namesDf['SimStage'] = [0, 0, 1, 1, 2, 2, 3, 3, 4, 4]
namesDf['Points'] = [4, 4, 4, 4, 4, 1, 2, 4, 4, 1]
现在,对于每个 Sim 阶段,您都需要最高点值。所以,我首先将它们按团队和模拟阶段分组,然后按点对它们进行排序。
namesDf = namesDf.groupby(['Team', 'SimStage'], as_index = False).apply(lambda x: x.sort_values(['Points'], ascending = False)).reset_index(drop = True)
这将使我的数据框看起来像这样,请注意 Sim Stage 中值 3 的变化:
Team SimStage Points
0 Brazil 0 4
1 Brazil 0 4
2 Brazil 1 4
3 Brazil 1 4
4 Brazil 2 4
5 Brazil 2 1
6 Brazil 3 4
7 Brazil 3 2
8 Brazil 4 4
9 Brazil 4 1
现在我通过保留每个团队和模拟阶段的第一个实例来删除重复项。
namesDf = namesDf.drop_duplicates(subset=['Team', 'SimStage'], keep = 'first')
最终结果:
Team SimStage Points
0 Brazil 0 4
2 Brazil 1 4
4 Brazil 2 4
6 Brazil 3 4
8 Brazil 4 4