带颜色条的圆图
Circle Plot with Color Bar
我正在尝试用颜色条绘制圆图,几乎像这样:
但是,目前颜色条的最小值是1;我希望能够将其设置为 0。
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from sklearn import preprocessing
df = pd.DataFrame({'A':[1,2,1,2,3,4,2,1,4],
'B':[3,1,5,1,2,4,5,2,3],
'C':[4,2,4,1,3,3,4,2,1]})
# set the Colour
x = df.values
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
df_S = pd.DataFrame(x_scaled)
c1 = df['C']
c2 = df_S[2]
colors = [cm.jet(color) for color in c2]
# Graph
plt.figure()
ax = plt.gca()
for a, b, color in zip(df['A'], df['B'], colors):
circle = plt.Circle((a,
b),
1, # Size
color=color,
lw=5,
fill=False)
ax.add_artist(circle)
plt.xlim([0,5])
plt.ylim([0,5])
plt.xlabel('A')
plt.ylabel('B')
ax.set_aspect(1.0)
sc = plt.scatter(df['A'],
df['B'],
s=0,
c=c1,
cmap='jet',
facecolors='none')
plt.grid()
cbar = plt.colorbar(sc)
cbar.set_label('C', rotation=270, labelpad=10)
plt.show()
归功于这个原始问题:
您可以 fiddle 使用 extend parameters 来获得此输出:
fraction = 1/3 # colorbar axis min is 1, max is 4, steps are 0.5
# => 2*(1/6) to get to 0
cbar = plt.colorbar(sc, extend="min", extendfrac=fraction, extendrect=True)
但是扩展名将没有标签。
只需在 plt.scatter()
中添加 vmin
和 vmax
参数即可。
sc = plt.scatter(df['A'],
df['B'],
s=0,
c=c1,
cmap='jet',
vmin = 0,
vmax = 4,
facecolors='none')
如果您想根据颜色图调整圆圈的颜色,则需要使用 `Normalize(vmin, vmax) 并将颜色图传递给具有归一化值的圆图。
代码如下:
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from sklearn import preprocessing
from matplotlib.colors import Normalize
df = pd.DataFrame({'A':[1,2,1,2,3,4,2,1,4],
'B':[3,1,5,1,2,4,5,2,3],
'C':[4,2,4,1,3,3,4,2,1]})
# set the Colour
x = df.values
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
df_S = pd.DataFrame(x_scaled)
c1 = df['C']
c2 = df_S[2]
cmap = cm.jet
vmin = 0
vmax = 5 #your max Y is 5, not 4
norm = Normalize(vmin, vmax)
# Graph
plt.figure()
ax = plt.gca()
for a, b in zip(df['A'], df['B']):
circle = plt.Circle((a,
b),
1, # Size
color=cmap(norm(b)),
lw=5,
fill=False)
ax.add_artist(circle)
plt.xlim([0,5])
plt.ylim([0,5])
plt.xlabel('A')
plt.ylabel('B')
ax.set_aspect(1.0)
sc = plt.scatter(df['A'],
df['B'],
s=0,
c=c1,
cmap='jet',
vmin = vmin,
vmax = vmax,
facecolors='none')
plt.grid()
cbar = plt.colorbar(sc)
cbar.set_label('C', rotation=270, labelpad=10)
plt.show()
感谢 alec_djinn 这个答案确实:
- 设置颜色条的最小值和最大值
- 在与颜色条相同的范围内控制圆圈的颜色(变量 C)
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from sklearn import preprocessing
from matplotlib.colors import Normalize
df = pd.DataFrame({'A':[1,2,1,2,3,4,2,1,4],
'B':[3,2,5,1,2,4,5,2,3],
'C':[4,2,4,1,3,3,4,2,1]})
# set the Colour
x = df[['C']].values
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
df_S = pd.DataFrame(x_scaled)
c1 = df['C']
c2 = df_S[0]
cmap = cm.jet # Use the same Cmap
# Set the Colour Scale
vmin = 0
vmax = 5
norm = Normalize(vmin, vmax)
# Graph
plt.figure()
ax = plt.gca()
for a, b, c in zip(df['A'], df['B'], df['C']):
circle = plt.Circle((a,
b),
1, # Size
color=cmap(norm(c)),
lw=5,
fill=False)
ax.add_artist(circle)
plt.xlim([0,5])
plt.ylim([0,5])
plt.xlabel('A')
plt.ylabel('B')
ax.set_aspect(1.0)
sc = plt.scatter(df['A'],
df['B'],
s=0,
c=c1,
cmap='jet', # Use the same Cmap
vmin = vmin,
vmax = vmax,
facecolors='none')
plt.grid()
cbar = plt.colorbar(sc)
cbar.set_label('C', rotation=270, labelpad=20)
plt.show()
我正在尝试用颜色条绘制圆图,几乎像这样:
但是,目前颜色条的最小值是1;我希望能够将其设置为 0。
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from sklearn import preprocessing
df = pd.DataFrame({'A':[1,2,1,2,3,4,2,1,4],
'B':[3,1,5,1,2,4,5,2,3],
'C':[4,2,4,1,3,3,4,2,1]})
# set the Colour
x = df.values
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
df_S = pd.DataFrame(x_scaled)
c1 = df['C']
c2 = df_S[2]
colors = [cm.jet(color) for color in c2]
# Graph
plt.figure()
ax = plt.gca()
for a, b, color in zip(df['A'], df['B'], colors):
circle = plt.Circle((a,
b),
1, # Size
color=color,
lw=5,
fill=False)
ax.add_artist(circle)
plt.xlim([0,5])
plt.ylim([0,5])
plt.xlabel('A')
plt.ylabel('B')
ax.set_aspect(1.0)
sc = plt.scatter(df['A'],
df['B'],
s=0,
c=c1,
cmap='jet',
facecolors='none')
plt.grid()
cbar = plt.colorbar(sc)
cbar.set_label('C', rotation=270, labelpad=10)
plt.show()
归功于这个原始问题:
您可以 fiddle 使用 extend parameters 来获得此输出:
fraction = 1/3 # colorbar axis min is 1, max is 4, steps are 0.5
# => 2*(1/6) to get to 0
cbar = plt.colorbar(sc, extend="min", extendfrac=fraction, extendrect=True)
但是扩展名将没有标签。
只需在 plt.scatter()
中添加 vmin
和 vmax
参数即可。
sc = plt.scatter(df['A'],
df['B'],
s=0,
c=c1,
cmap='jet',
vmin = 0,
vmax = 4,
facecolors='none')
如果您想根据颜色图调整圆圈的颜色,则需要使用 `Normalize(vmin, vmax) 并将颜色图传递给具有归一化值的圆图。
代码如下:
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from sklearn import preprocessing
from matplotlib.colors import Normalize
df = pd.DataFrame({'A':[1,2,1,2,3,4,2,1,4],
'B':[3,1,5,1,2,4,5,2,3],
'C':[4,2,4,1,3,3,4,2,1]})
# set the Colour
x = df.values
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
df_S = pd.DataFrame(x_scaled)
c1 = df['C']
c2 = df_S[2]
cmap = cm.jet
vmin = 0
vmax = 5 #your max Y is 5, not 4
norm = Normalize(vmin, vmax)
# Graph
plt.figure()
ax = plt.gca()
for a, b in zip(df['A'], df['B']):
circle = plt.Circle((a,
b),
1, # Size
color=cmap(norm(b)),
lw=5,
fill=False)
ax.add_artist(circle)
plt.xlim([0,5])
plt.ylim([0,5])
plt.xlabel('A')
plt.ylabel('B')
ax.set_aspect(1.0)
sc = plt.scatter(df['A'],
df['B'],
s=0,
c=c1,
cmap='jet',
vmin = vmin,
vmax = vmax,
facecolors='none')
plt.grid()
cbar = plt.colorbar(sc)
cbar.set_label('C', rotation=270, labelpad=10)
plt.show()
感谢 alec_djinn 这个答案确实:
- 设置颜色条的最小值和最大值
- 在与颜色条相同的范围内控制圆圈的颜色(变量 C)
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from sklearn import preprocessing
from matplotlib.colors import Normalize
df = pd.DataFrame({'A':[1,2,1,2,3,4,2,1,4],
'B':[3,2,5,1,2,4,5,2,3],
'C':[4,2,4,1,3,3,4,2,1]})
# set the Colour
x = df[['C']].values
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
df_S = pd.DataFrame(x_scaled)
c1 = df['C']
c2 = df_S[0]
cmap = cm.jet # Use the same Cmap
# Set the Colour Scale
vmin = 0
vmax = 5
norm = Normalize(vmin, vmax)
# Graph
plt.figure()
ax = plt.gca()
for a, b, c in zip(df['A'], df['B'], df['C']):
circle = plt.Circle((a,
b),
1, # Size
color=cmap(norm(c)),
lw=5,
fill=False)
ax.add_artist(circle)
plt.xlim([0,5])
plt.ylim([0,5])
plt.xlabel('A')
plt.ylabel('B')
ax.set_aspect(1.0)
sc = plt.scatter(df['A'],
df['B'],
s=0,
c=c1,
cmap='jet', # Use the same Cmap
vmin = vmin,
vmax = vmax,
facecolors='none')
plt.grid()
cbar = plt.colorbar(sc)
cbar.set_label('C', rotation=270, labelpad=20)
plt.show()