UserWarning:布尔系列键将重新索引以匹配 DataFrame 索引

UserWarning: Boolean Series key will be reindexed to match DataFrame index

使用此语句时,这会在单个语句中显示多个警告:

Internaldfdeny=pd.DataFrame({'Count':Internaldf[Internaldf['Status']=='deny'][Internaldf['SrcIP']!="NA"][Internaldf['DstIP']!="NA"][Internaldf['TimeStamp']-Internaldf['TimeStamp'].iloc[0]<pd.tslib.Timedelta(minutes=30)].groupby(['DstPort','SrcIP']).size()}).reset_index().pivot_table('Count',['DstPort'],'SrcIP').fillna(0).to_sparse(fill_value=0)

警告结果为:

/home/lubuntu/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:1: UserWarning: Boolean Series key will be reindexed to match DataFrame index. """Entry point for launching an IPython kernel. /home/lubuntu/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:1: UserWarning: Boolean Series key will be reindexed to match DataFrame index. """Entry point for launching an IPython kernel. /home/lubuntu/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:1: FutureWarning: pandas.tslib is deprecated and will be removed in a future version. You can access Timedelta as pandas.Timedelta """Entry point for launching an IPython kernel. /home/lubuntu/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:1: UserWarning: Boolean Series key will be reindexed to match DataFrame index. """Entry point for launching an IPython kernel.

我找不到旋转 table 的任何其他方法:

我在没有 to_sparse(0) 的情况下进行了检查,但它仍然显示它! 这是一个重要的警告吗? 我一直忽略它。 我一直在用 木星笔记本 Python v3.6 如果完全相关,则通过 anaconda 安装。

编辑:

Internaldf.head() 

显示

                   TimeStamp          SrcIP          DstIP  DstPort Status
0 2018-03-31 03:48:13.731929  192.168.52.43  166.62.28.228       80  close
1 2018-03-31 03:48:13.749007  10.208.23.136    96.45.33.73     8888   deny
2 2018-03-31 03:48:13.799235    10.208.2.56   14.142.64.16     8081   deny
3 2018-03-31 03:48:13.799235  10.208.35.193  13.75.119.102      443  close
4 2018-03-31 03:48:13.799235    10.208.2.70   10.208.3.255      137   deny

我认为需要:

m1 = Internaldf['Status']=='deny'
m2 = Internaldf['SrcIP']!="NA"
#if want check non NaNs
#m2 = Internaldf['SrcIP'].notnull()
m3 = Internaldf['DstIP']!="NA"
#if want check non NaNs
#m3 = Internaldf['DstIP'].notnull()
m4 = Internaldf['TimeStamp']-Internaldf['TimeStamp'].iloc[0] < pd.Timedelta(minutes=30)

#chain condition with & for AND or by | for OR, for column use reset_index 
df=Internaldf[m1 & m2 & m3 & m4].groupby(['DstPort','SrcIP']).size().reset_index(name='Count')

Internaldfdeny=df.pivot_table('Count','DstPort','SrcIP').fillna(0).to_sparse(fill_value=0)
print (Internaldfdeny)
SrcIP    10.208.2.56  10.208.2.70  10.208.23.136
DstPort                                         
137              0.0          1.0            0.0
8081             1.0          0.0            0.0
8888             0.0          0.0            1.0