java 中一维数据的轻量级增量分类
Lightweight incremental classification of 1 dimensional data in java
我有一组观察值对(值,class)。值是自然数。只有两个 classes。我希望在单个决策点分离 classes 非常容易,例如,class A if value < 10,class B if value >= 10。唯一的困难classes 和决策边界附近的值之间存在一些重叠。
是否有一种快速、轻量级的方法来更新观察结果并class在Java中为这个问题确定一个新的数据点?理想情况下是这样的:
classifier.addObservation(observation);
classifier.classify(value);
一个解决方案将是一个 Java 包的演示,以及您选择算法的理由。
经过一番搜索,我最终使用了 Weka。特别是我使用了朴素贝叶斯分类器。他们的数据结构有点深奥,但它确实有效而且速度很快。
package agent.agenttype.ijcai;
import weka.classifiers.Classifier;
import weka.classifiers.bayes.NaiveBayes;
import weka.core.Attribute;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.SparseInstance;
public class Example {
public static enum ClassLabel {A, B};
Instances trainingSet;
FastVector att = new FastVector(2);
FastVector cl = new FastVector(2);
public Example(){
//Add class labels
cl.addElement(ClassLabel.values()[0].name());
cl.addElement(ClassLabel.values()[1].name());
//set the name of our value attribute
Attribute Attribute1 = new Attribute("Value");
//set the name of our class label atrribute
Attribute ClassAttribute = new Attribute("Label", cl);
att.addElement(Attribute1);
att.addElement(ClassAttribute);
//create training set that uses our attributes to interpret instances
trainingSet = new Instances("TrainingSet", att, 2);
trainingSet.setClassIndex(1);//tell our training set that index 2 of instances is the class label
}
public void addObservationToEdge(int value, ClassLabel classLabel){
Instance instance = new SparseInstance(2);
instance.setValue((Attribute)att.elementAt(0), value); //set value
instance.setValue((Attribute)att.elementAt(1), classLabel.name());//set our
trainingSet.add(instance);
}
public ClassLabel classifyValue( int value) throws Exception{
Instance instanceForClassification = new SparseInstance(1);
instanceForClassification.setValue((Attribute)att.elementAt(0), value);
instanceForClassification.setDataset(trainingSet);//make instance inherit attribute labels from training set
Classifier cModel = (Classifier)new NaiveBayes();//create naive bayes classifier
cModel.buildClassifier(trainingSet);
int labelNumber = (int) cModel.classifyInstance(instanceForClassification);
return ClassLabel.values()[labelNumber];
}
public static void main(String[] args){
Example example = new Example();
example.addObservationToEdge(1, ClassLabel.A);
example.addObservationToEdge(2, ClassLabel.A);
example.addObservationToEdge(5, ClassLabel.A);
example.addObservationToEdge(11, ClassLabel.A);
example.addObservationToEdge(9, ClassLabel.B);
example.addObservationToEdge(12, ClassLabel.B);
example.addObservationToEdge(15, ClassLabel.B);
example.addObservationToEdge(20, ClassLabel.B);
try {
//print classification results
for(int i = 0; i<20; i++){
System.out.println("Value: " + i + " Class Label:" + example.classifyValue(i));
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
输出:
Value: 0 Class Label:A
Value: 1 Class Label:A
Value: 2 Class Label:A
Value: 3 Class Label:A
Value: 4 Class Label:A
Value: 5 Class Label:A
Value: 6 Class Label:A
Value: 7 Class Label:A
Value: 8 Class Label:A
Value: 9 Class Label:A
Value: 10 Class Label:B
Value: 11 Class Label:B
Value: 12 Class Label:B
Value: 13 Class Label:B
Value: 14 Class Label:B
Value: 15 Class Label:B
Value: 16 Class Label:B
Value: 17 Class Label:B
Value: 18 Class Label:B
Value: 19 Class Label:B
我有一组观察值对(值,class)。值是自然数。只有两个 classes。我希望在单个决策点分离 classes 非常容易,例如,class A if value < 10,class B if value >= 10。唯一的困难classes 和决策边界附近的值之间存在一些重叠。
是否有一种快速、轻量级的方法来更新观察结果并class在Java中为这个问题确定一个新的数据点?理想情况下是这样的:
classifier.addObservation(observation);
classifier.classify(value);
一个解决方案将是一个 Java 包的演示,以及您选择算法的理由。
经过一番搜索,我最终使用了 Weka。特别是我使用了朴素贝叶斯分类器。他们的数据结构有点深奥,但它确实有效而且速度很快。
package agent.agenttype.ijcai;
import weka.classifiers.Classifier;
import weka.classifiers.bayes.NaiveBayes;
import weka.core.Attribute;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.SparseInstance;
public class Example {
public static enum ClassLabel {A, B};
Instances trainingSet;
FastVector att = new FastVector(2);
FastVector cl = new FastVector(2);
public Example(){
//Add class labels
cl.addElement(ClassLabel.values()[0].name());
cl.addElement(ClassLabel.values()[1].name());
//set the name of our value attribute
Attribute Attribute1 = new Attribute("Value");
//set the name of our class label atrribute
Attribute ClassAttribute = new Attribute("Label", cl);
att.addElement(Attribute1);
att.addElement(ClassAttribute);
//create training set that uses our attributes to interpret instances
trainingSet = new Instances("TrainingSet", att, 2);
trainingSet.setClassIndex(1);//tell our training set that index 2 of instances is the class label
}
public void addObservationToEdge(int value, ClassLabel classLabel){
Instance instance = new SparseInstance(2);
instance.setValue((Attribute)att.elementAt(0), value); //set value
instance.setValue((Attribute)att.elementAt(1), classLabel.name());//set our
trainingSet.add(instance);
}
public ClassLabel classifyValue( int value) throws Exception{
Instance instanceForClassification = new SparseInstance(1);
instanceForClassification.setValue((Attribute)att.elementAt(0), value);
instanceForClassification.setDataset(trainingSet);//make instance inherit attribute labels from training set
Classifier cModel = (Classifier)new NaiveBayes();//create naive bayes classifier
cModel.buildClassifier(trainingSet);
int labelNumber = (int) cModel.classifyInstance(instanceForClassification);
return ClassLabel.values()[labelNumber];
}
public static void main(String[] args){
Example example = new Example();
example.addObservationToEdge(1, ClassLabel.A);
example.addObservationToEdge(2, ClassLabel.A);
example.addObservationToEdge(5, ClassLabel.A);
example.addObservationToEdge(11, ClassLabel.A);
example.addObservationToEdge(9, ClassLabel.B);
example.addObservationToEdge(12, ClassLabel.B);
example.addObservationToEdge(15, ClassLabel.B);
example.addObservationToEdge(20, ClassLabel.B);
try {
//print classification results
for(int i = 0; i<20; i++){
System.out.println("Value: " + i + " Class Label:" + example.classifyValue(i));
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
输出:
Value: 0 Class Label:A
Value: 1 Class Label:A
Value: 2 Class Label:A
Value: 3 Class Label:A
Value: 4 Class Label:A
Value: 5 Class Label:A
Value: 6 Class Label:A
Value: 7 Class Label:A
Value: 8 Class Label:A
Value: 9 Class Label:A
Value: 10 Class Label:B
Value: 11 Class Label:B
Value: 12 Class Label:B
Value: 13 Class Label:B
Value: 14 Class Label:B
Value: 15 Class Label:B
Value: 16 Class Label:B
Value: 17 Class Label:B
Value: 18 Class Label:B
Value: 19 Class Label:B