Python 曲线拟合,高斯分布
Python Curve fit, gaussian
我正在尝试使用 scipy 和曲线拟合对我的数据进行高斯拟合,这是我的代码:
import csv
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
A=[]
T=[]
seuil=1000
range_gauss=4
a=0
pos_peaks=[]
amp_peaks=[]
A_gauss=[]
T_gauss=[]
new_A=[]
new_T=[]
def gauss(x,a,x0,sigma):
return a*np.exp(-(x-x0)**2/(2*sigma**2))
with open("classeur_test.csv",'r') as csvfile:
reader=csv.reader(csvfile, delimiter=',')
for row in reader :
A.append(float(row[0]))
T.append(float(row[1]))
npA=np.array(A)
npT=np.array(T)
for i in range(1,len(T)):
#PEAK DETECTION
if (A[i]>A[i-1] and A[i]>A[i+1]) and A[i]>seuil:
pos_peaks.append(i)
amp_peaks.append(A[i])
#GAUSSIAN RANGE
for j in range(-range_gauss,range_gauss):
#ATTENTION AUX LIMITES
if(i+j>0 and i+j<len(T)-1):
A_gauss.append(A[i+j])
T_gauss.append(T[i+j])
npA_gauss = np.array(A_gauss)
npT_gauss = np.array(T_gauss)
for i in range (0,7):
new_A.append(npA_gauss[i])
new_T.append(npT_gauss[i])
new_npA=np.array(new_A)
new_npT=np.array(new_T)
n = 2*range_gauss
mean = sum(new_npT*new_npA)/n
sigma = sum(new_npA*(new_npT-mean)**2)/n
popt,pcov = curve_fit(gauss,new_npT,new_npA,p0=[1,mean,sigma])
plt.plot(T,A,'b+:',label='data')
plt.plot(new_npT,gauss(new_npT,*popt),'ro:',label='Fit')
print ("new_npA : ",new_npA)
print ("new_npT : ",new_npT)
plt.legend()
plt.title('Fit')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
我的数组 new_npT
和 new_npA
是这样的 numpy 数组:
new_npA : [ 264. 478. 733. 1402. 1337. 698. 320.]
new_npT : [229.609344 231.619385 233.62944 235.639496 237.649536 239.659592
241.669647]
这是结果
我不明白为什么我不能成功绘制高斯曲线...
有什么解释吗?
我现在可以在我的数据上拟合高斯曲线
我仍然不明白 Jannick 是如何找到 p0
曲线拟合的,但它确实有效。
我创建了一个包含峰值位置和振幅的 3 维数组,并为 rang_gauss
使用了 while
循环。我在我的 3D 阵列中正确使用了 scipy curve_fit
,并用系数 f
.
校正了振幅
import csv
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
seuil=1000 # calculer en fonction du bruit etc ................................
range_gauss=4
A=[]
T=[]
pos_peaks=[]
amp_peaks=[]
indices_peaks=[]
tab_popt=[]
l=[]
gauss_result=[]
tab_w=[]
def gauss1(x,a,x0,sigma):
return a*np.exp(-(x-x0)**2/(2*sigma**2))
def gauss2(x,a,x0,sigma):
return (a/sigma*np.sqrt(2*np.pi))*np.exp(-0.5*((x-x0)/sigma)**2)
#LECTURE DU FICHIER ET INITIALISATION DE TABLEAUX CONTENANT TOUTES LES VALEURS
with open("classeur_test.csv",'r') as csvfile:
reader=csv.reader(csvfile, delimiter=',')
for row in reader :
A.append(float(row[0]))
T.append(float(row[1]))
#PEAK DETECTION
for i in range(1,len(T)):
if (A[i]>A[i-1] and A[i]>A[i+1]) and A[i]>seuil:
pos_peaks.append(T[i])
amp_peaks.append(A[i])
indices_peaks.append(i)
#TABLEAU 3D AVEC LES AMPLITUDES ET TEMPS DE CHAQUE PIC
Tableau=np.zeros((len(pos_peaks),2,2*range_gauss+1))
#POUR CHAQUE PIC
m=0
j=-range_gauss
for i in range(0,len(pos_peaks)):
while(j<range_gauss+1):
#PEAK DETECTION & LIMITS CONSIDERATION
if(pos_peaks[i]+j>=0 and pos_peaks[i]+j<=T[len(T)-1] and m<=2*range_gauss+1 and indices_peaks[i]+j>=0):
Tableau[i,0,m]=(A[indices_peaks[i]+j])
Tableau[i,1,m]=(T[indices_peaks[i]+j])
m=m+1
j=j+1
else :
j=j+1
print("else")
print("1 : ",pos_peaks[i]+j,", m : ",m," , indices_peaks[i]+j : ",indices_peaks[i]+j)
m=0
j=-range_gauss
popt,pcov = curve_fit(gauss2,Tableau[i,1,:],Tableau[i,0,:],p0=[[1400,240,10]])
tab_popt.append(popt)
l.append(np.linspace(T[indices_peaks[i]-range_gauss],T[indices_peaks[i]+range_gauss],50))
gauss_result.append(gauss2(l[i],1,tab_popt[i][1],tab_popt[i][2])*(1))
f= amp_peaks[i]/max(gauss_result[i])
gauss_result[i]=gauss_result[i]*f
#LARGEUR MI HAUTEUR
w=2*np.sqrt(2*np.log(2))*tab_popt[i][2]
tab_w.append(w)
####################################PLOTS
plt.subplot(2,1,1)
plt.plot(T,A,label='data')
plt.axis([T[0]-5,T[len(T)-1]-10,0,max(A)+200])
#plt.plot(Tableau[i,1,:],gauss2(Tableau[i,1,:],*popt),'ro:',label='fit')
plt.subplot(2,1,2)
plt.plot(l[i],gauss_result[i])
plt.axis([T[0]-5,T[len(T)-1]-10,0,max(A)+200])
'''TEST POINTS INFLEXIONS
for j in range(0,len(A)-1):
inflex_points.append((np.diff(np.diff(A[j],n=2),n=2)))
print(inflex_points[j])
for k in range(0,len(inflex_points[j])-1):
if (inflex_points[j][k] < 1 and inflex_points[j][k] > -1):
print("j : ",j)'''
'''TEST INTERNET GRADIENT ???
plt.plot(np.gradient(gauss_result[0]), '+')
spl = UnivariateSpline(np.arange(len(gauss_result[0])), np.gradient(gauss_result[0]), k=5)
spl.set_smoothing_factor(1000)
plt.plot(spl(np.arange(len(gauss_result[0]))), label='Smooth Fct 1e3')
spl.set_smoothing_factor(10000)
plt.plot(spl(np.arange(len(gauss_result[0]))), label='Smooth Fct 1e4')
plt.legend(loc='lower left')
max_idx = np.argmax(spl(np.arange(len(gauss_result[0]))))
plt.vlines(max_idx, -5, 9, linewidth=5, alpha=0.3)
'''
plt.show()
我正在尝试使用 scipy 和曲线拟合对我的数据进行高斯拟合,这是我的代码:
import csv
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
A=[]
T=[]
seuil=1000
range_gauss=4
a=0
pos_peaks=[]
amp_peaks=[]
A_gauss=[]
T_gauss=[]
new_A=[]
new_T=[]
def gauss(x,a,x0,sigma):
return a*np.exp(-(x-x0)**2/(2*sigma**2))
with open("classeur_test.csv",'r') as csvfile:
reader=csv.reader(csvfile, delimiter=',')
for row in reader :
A.append(float(row[0]))
T.append(float(row[1]))
npA=np.array(A)
npT=np.array(T)
for i in range(1,len(T)):
#PEAK DETECTION
if (A[i]>A[i-1] and A[i]>A[i+1]) and A[i]>seuil:
pos_peaks.append(i)
amp_peaks.append(A[i])
#GAUSSIAN RANGE
for j in range(-range_gauss,range_gauss):
#ATTENTION AUX LIMITES
if(i+j>0 and i+j<len(T)-1):
A_gauss.append(A[i+j])
T_gauss.append(T[i+j])
npA_gauss = np.array(A_gauss)
npT_gauss = np.array(T_gauss)
for i in range (0,7):
new_A.append(npA_gauss[i])
new_T.append(npT_gauss[i])
new_npA=np.array(new_A)
new_npT=np.array(new_T)
n = 2*range_gauss
mean = sum(new_npT*new_npA)/n
sigma = sum(new_npA*(new_npT-mean)**2)/n
popt,pcov = curve_fit(gauss,new_npT,new_npA,p0=[1,mean,sigma])
plt.plot(T,A,'b+:',label='data')
plt.plot(new_npT,gauss(new_npT,*popt),'ro:',label='Fit')
print ("new_npA : ",new_npA)
print ("new_npT : ",new_npT)
plt.legend()
plt.title('Fit')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
我的数组 new_npT
和 new_npA
是这样的 numpy 数组:
new_npA : [ 264. 478. 733. 1402. 1337. 698. 320.]
new_npT : [229.609344 231.619385 233.62944 235.639496 237.649536 239.659592
241.669647]
这是结果
我不明白为什么我不能成功绘制高斯曲线...
有什么解释吗?
我现在可以在我的数据上拟合高斯曲线
我仍然不明白 Jannick 是如何找到 p0
曲线拟合的,但它确实有效。
我创建了一个包含峰值位置和振幅的 3 维数组,并为 rang_gauss
使用了 while
循环。我在我的 3D 阵列中正确使用了 scipy curve_fit
,并用系数 f
.
import csv
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
seuil=1000 # calculer en fonction du bruit etc ................................
range_gauss=4
A=[]
T=[]
pos_peaks=[]
amp_peaks=[]
indices_peaks=[]
tab_popt=[]
l=[]
gauss_result=[]
tab_w=[]
def gauss1(x,a,x0,sigma):
return a*np.exp(-(x-x0)**2/(2*sigma**2))
def gauss2(x,a,x0,sigma):
return (a/sigma*np.sqrt(2*np.pi))*np.exp(-0.5*((x-x0)/sigma)**2)
#LECTURE DU FICHIER ET INITIALISATION DE TABLEAUX CONTENANT TOUTES LES VALEURS
with open("classeur_test.csv",'r') as csvfile:
reader=csv.reader(csvfile, delimiter=',')
for row in reader :
A.append(float(row[0]))
T.append(float(row[1]))
#PEAK DETECTION
for i in range(1,len(T)):
if (A[i]>A[i-1] and A[i]>A[i+1]) and A[i]>seuil:
pos_peaks.append(T[i])
amp_peaks.append(A[i])
indices_peaks.append(i)
#TABLEAU 3D AVEC LES AMPLITUDES ET TEMPS DE CHAQUE PIC
Tableau=np.zeros((len(pos_peaks),2,2*range_gauss+1))
#POUR CHAQUE PIC
m=0
j=-range_gauss
for i in range(0,len(pos_peaks)):
while(j<range_gauss+1):
#PEAK DETECTION & LIMITS CONSIDERATION
if(pos_peaks[i]+j>=0 and pos_peaks[i]+j<=T[len(T)-1] and m<=2*range_gauss+1 and indices_peaks[i]+j>=0):
Tableau[i,0,m]=(A[indices_peaks[i]+j])
Tableau[i,1,m]=(T[indices_peaks[i]+j])
m=m+1
j=j+1
else :
j=j+1
print("else")
print("1 : ",pos_peaks[i]+j,", m : ",m," , indices_peaks[i]+j : ",indices_peaks[i]+j)
m=0
j=-range_gauss
popt,pcov = curve_fit(gauss2,Tableau[i,1,:],Tableau[i,0,:],p0=[[1400,240,10]])
tab_popt.append(popt)
l.append(np.linspace(T[indices_peaks[i]-range_gauss],T[indices_peaks[i]+range_gauss],50))
gauss_result.append(gauss2(l[i],1,tab_popt[i][1],tab_popt[i][2])*(1))
f= amp_peaks[i]/max(gauss_result[i])
gauss_result[i]=gauss_result[i]*f
#LARGEUR MI HAUTEUR
w=2*np.sqrt(2*np.log(2))*tab_popt[i][2]
tab_w.append(w)
####################################PLOTS
plt.subplot(2,1,1)
plt.plot(T,A,label='data')
plt.axis([T[0]-5,T[len(T)-1]-10,0,max(A)+200])
#plt.plot(Tableau[i,1,:],gauss2(Tableau[i,1,:],*popt),'ro:',label='fit')
plt.subplot(2,1,2)
plt.plot(l[i],gauss_result[i])
plt.axis([T[0]-5,T[len(T)-1]-10,0,max(A)+200])
'''TEST POINTS INFLEXIONS
for j in range(0,len(A)-1):
inflex_points.append((np.diff(np.diff(A[j],n=2),n=2)))
print(inflex_points[j])
for k in range(0,len(inflex_points[j])-1):
if (inflex_points[j][k] < 1 and inflex_points[j][k] > -1):
print("j : ",j)'''
'''TEST INTERNET GRADIENT ???
plt.plot(np.gradient(gauss_result[0]), '+')
spl = UnivariateSpline(np.arange(len(gauss_result[0])), np.gradient(gauss_result[0]), k=5)
spl.set_smoothing_factor(1000)
plt.plot(spl(np.arange(len(gauss_result[0]))), label='Smooth Fct 1e3')
spl.set_smoothing_factor(10000)
plt.plot(spl(np.arange(len(gauss_result[0]))), label='Smooth Fct 1e4')
plt.legend(loc='lower left')
max_idx = np.argmax(spl(np.arange(len(gauss_result[0]))))
plt.vlines(max_idx, -5, 9, linewidth=5, alpha=0.3)
'''
plt.show()