使用 data.table 选择正确的连接

Selecting correct join with data.table

来自 的跟进。

我有三个数据表(实际的 input 一个更大,性能很重要,所以我必须尽可能多地使用 ):

input <- fread("  ID   | T1 | T2 | T3 |    DATE    
                ACC001 |  1 |  0 |  0 | 31/12/2016 
                ACC001 |  1 |  0 |  1 | 30/06/2017 
                ACC002 |  0 |  1 |  1 | 31/12/2016", sep = "|")

mevs <- fread("  DATE    | INDEX_NAME | INDEX_VALUE 
              31/12/2016 | GDP        |  1.05       
              30/06/2017 | GDP        |  1.06       
              31/12/2017 | GDP        |  1.07       
              30/06/2018 | GDP        |  1.08       
              31/12/2016 | CPI        |  0.02       
              30/06/2017 | CPI        |  0.00       
              31/12/2017 | CPI        | -0.01       
              30/06/2018 | CPI        |  0.01   ", sep = "|")

time <- fread("    DATE   
               31/12/2017 
               30/06/2018 ", sep = "|")

有了这些,我需要完成两件事:

为此,我使用了以下代码片段:

ones <- input[, .N, by = ID][N == 1, ID]

input[, .SD[time, on = "DATE"], by = ID
      ][dcast(mevs, DATE ~ INDEX_NAME), on = "DATE", `:=` (GDP = i.GDP, CPI = i.CPI)
        ][, (2:4) := lapply(.SD, function(x) if (.BY %in% ones) replace(x, is.na(x), 0L) else zoo::na.locf(x) )
          , by = ID, .SDcols = 2:4][]

哪个(感谢@Jaap):

预期输出为:

       ID T1 T2 T3       DATE  GDP   CPI
1: ACC001  1  0  0 31/12/2016 1.05  0.02
2: ACC001  1  0  1 30/06/2017 1.06  0.00
3: ACC001  1  0  1 31/12/2017 1.07 -0.01
4: ACC001  1  0  1 30/06/2018 1.08  0.01
5: ACC002  0  1  1 31/12/2016 1.05  0.02
6: ACC002  0  0  0 30/06/2017 1.06  0.00
7: ACC002  0  0  0 31/12/2017 1.07 -0.01
8: ACC002  0  0  0 30/06/2018 1.08  0.01

但我得到的是:

       ID T1 T2 T3       DATE  GDP   CPI
1: ACC001 NA NA NA 31/12/2017 1.07 -0.01
2: ACC001 NA NA NA 30/06/2018 1.08  0.01
3: ACC002 NA NA NA 31/12/2017 1.07 -0.01
4: ACC002 NA NA NA 30/06/2018 1.08  0.01

我几乎可以肯定第一步中 inputtime 之间的连接选择一定是错误的,但我找不到解决方法。

感谢大家的宝贵时间。

可能的解决方案:

times <- unique(rbindlist(list(time, as.data.table(unique(input$DATE))))
                )[, DATE := as.Date(DATE, "%d/%m/%Y")][order(DATE)]
input[, DATE := as.Date(DATE, "%d/%m/%Y")]
mevs[, DATE := as.Date(DATE, "%d/%m/%Y")]

ones <- input[, .N, by = ID][N == 1, ID]

input[, .SD[times, on = "DATE"], by = ID
      ][dcast(mevs, DATE ~ INDEX_NAME), on = "DATE", `:=` (GDP = i.GDP, CPI = i.CPI)
        ][, (2:4) := lapply(.SD, function(x) if (.BY %in% ones) replace(x, is.na(x), 0L) else zoo::na.locf(x) )
          , by = ID, .SDcols = 2:4][]

给出:

       ID T1 T2 T3       DATE  GDP   CPI
1: ACC001  1  0  0 2016-12-31 1.05  0.02
2: ACC001  1  0  1 2017-06-30 1.06  0.00
3: ACC001  1  0  1 2017-12-31 1.07 -0.01
4: ACC001  1  0  1 2018-06-30 1.08  0.01
5: ACC002  0  1  1 2016-12-31 1.05  0.02
6: ACC002  0  0  0 2017-06-30 1.06  0.00
7: ACC002  0  0  0 2017-12-31 1.07 -0.01
8: ACC002  0  0  0 2018-06-30 1.08  0.01