OpenCV unproject 2D指向具有已知深度`Z`的3D

OpenCV unproject 2D points to 3D with known depth `Z`

问题陈述

我正在尝试将 2D 点重新投影到它们的原始 3D 坐标,假设我知道每个点的距离。在 OpenCV documentation 之后,我设法让它以零失真工作。但是,当有失真时,结果是不正确的。

当前方法

因此,想法是反转以下内容:

进入以下内容:

作者:

  1. 使用 cv::undistortPoints
  2. 消除任何扭曲
  3. 通过反转上面的第二个等式,使用内在函数返回标准化相机坐标
  4. 乘以 z 以反转归一化。

问题

  1. 为什么我需要减去 f_xf_y 才能回到标准化的相机坐标(测试时凭经验找到)?在下面的代码中,在第 2 步中,如果我不减去——即使未失真的结果也是关闭的这是我的错误——我弄乱了索引。
  2. 如果我包括失真,结果是错误的——我做错了什么?

示例代码 (C++)

#include <iostream>
#include <opencv2/calib3d/calib3d.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <vector>

std::vector<cv::Point2d> Project(const std::vector<cv::Point3d>& points,
                                 const cv::Mat& intrinsic,
                                 const cv::Mat& distortion) {
  std::vector<cv::Point2d> result;
  if (!points.empty()) {
    cv::projectPoints(points, cv::Mat(3, 1, CV_64F, cvScalar(0.)),
                      cv::Mat(3, 1, CV_64F, cvScalar(0.)), intrinsic,
                      distortion, result);
  }
  return result;
}

std::vector<cv::Point3d> Unproject(const std::vector<cv::Point2d>& points,
                                   const std::vector<double>& Z,
                                   const cv::Mat& intrinsic,
                                   const cv::Mat& distortion) {
  double f_x = intrinsic.at<double>(0, 0);
  double f_y = intrinsic.at<double>(1, 1);
  double c_x = intrinsic.at<double>(0, 2);
  double c_y = intrinsic.at<double>(1, 2);
  // This was an error before:
  // double c_x = intrinsic.at<double>(0, 3);
  // double c_y = intrinsic.at<double>(1, 3);

  // Step 1. Undistort
  std::vector<cv::Point2d> points_undistorted;
  assert(Z.size() == 1 || Z.size() == points.size());
  if (!points.empty()) {
    cv::undistortPoints(points, points_undistorted, intrinsic,
                        distortion, cv::noArray(), intrinsic);
  }

  // Step 2. Reproject
  std::vector<cv::Point3d> result;
  result.reserve(points.size());
  for (size_t idx = 0; idx < points_undistorted.size(); ++idx) {
    const double z = Z.size() == 1 ? Z[0] : Z[idx];
    result.push_back(
        cv::Point3d((points_undistorted[idx].x - c_x) / f_x * z,
                    (points_undistorted[idx].y - c_y) / f_y * z, z));
  }
  return result;
}

int main() {
  const double f_x = 1000.0;
  const double f_y = 1000.0;
  const double c_x = 1000.0;
  const double c_y = 1000.0;
  const cv::Mat intrinsic =
      (cv::Mat_<double>(3, 3) << f_x, 0.0, c_x, 0.0, f_y, c_y, 0.0, 0.0, 1.0);
  const cv::Mat distortion =
      // (cv::Mat_<double>(5, 1) << 0.0, 0.0, 0.0, 0.0);  // This works!
      (cv::Mat_<double>(5, 1) << -0.32, 1.24, 0.0013, 0.0013);  // This doesn't!

  // Single point test.
  const cv::Point3d point_single(-10.0, 2.0, 12.0);
  const cv::Point2d point_single_projected = Project({point_single}, intrinsic,
                                                     distortion)[0];
  const cv::Point3d point_single_unprojected = Unproject({point_single_projected},
                                    {point_single.z}, intrinsic, distortion)[0];

  std::cout << "Expected Point: " << point_single.x;
  std::cout << " " << point_single.y;
  std::cout << " " << point_single.z << std::endl;
  std::cout << "Computed Point: " << point_single_unprojected.x;
  std::cout << " " << point_single_unprojected.y;
  std::cout << " " << point_single_unprojected.z << std::endl;
}

相同代码(Python)

import cv2
import numpy as np

def Project(points, intrinsic, distortion):
  result = []
  rvec = tvec = np.array([0.0, 0.0, 0.0])
  if len(points) > 0:
    result, _ = cv2.projectPoints(points, rvec, tvec,
                                  intrinsic, distortion)
  return np.squeeze(result, axis=1)

def Unproject(points, Z, intrinsic, distortion):
  f_x = intrinsic[0, 0]
  f_y = intrinsic[1, 1]
  c_x = intrinsic[0, 2]
  c_y = intrinsic[1, 2]
  # This was an error before
  # c_x = intrinsic[0, 3]
  # c_y = intrinsic[1, 3]

  # Step 1. Undistort.
  points_undistorted = np.array([])
  if len(points) > 0:
    points_undistorted = cv2.undistortPoints(np.expand_dims(points, axis=1), intrinsic, distortion, P=intrinsic)
  points_undistorted = np.squeeze(points_undistorted, axis=1)

  # Step 2. Reproject.
  result = []
  for idx in range(points_undistorted.shape[0]):
    z = Z[0] if len(Z) == 1 else Z[idx]
    x = (points_undistorted[idx, 0] - c_x) / f_x * z
    y = (points_undistorted[idx, 1] - c_y) / f_y * z
    result.append([x, y, z])
  return result

f_x = 1000.
f_y = 1000.
c_x = 1000.
c_y = 1000.

intrinsic = np.array([
  [f_x, 0.0, c_x],
  [0.0, f_y, c_y],
  [0.0, 0.0, 1.0]
])

distortion = np.array([0.0, 0.0, 0.0, 0.0])  # This works!
distortion = np.array([-0.32, 1.24, 0.0013, 0.0013])  # This doesn't!

point_single = np.array([[-10.0, 2.0, 12.0],])
point_single_projected = Project(point_single, intrinsic, distortion)
Z = np.array([point[2] for point in point_single])
point_single_unprojected = Unproject(point_single_projected,
                                     Z,
                                     intrinsic, distortion)
print "Expected point:", point_single[0]
print "Computed point:", point_single_unprojected[0]

零失真的结果(如前所述)是正确的:

Expected Point: -10 2 12
Computed Point: -10 2 12

但是当包含失真时,结果是关闭的:

Expected Point: -10 2 12
Computed Point: -4.26634 0.848872 12

更新 1. 澄清

这是相机到图像的投影——我假设 3D 点在相机坐标系中。

更新 2. 想通了第一个问题

好的,我算出了 f_xf_y 的减法——我愚蠢到把索引弄乱了。更新了代码以更正。另一个问题仍然成立。

更新 3. 添加了 Python 等效代码

为了提高知名度,添加了Python代码,因为它有同样的错误。

问题 2 的答案

我发现问题所在 -- 3D 点坐标很重要!我假设无论我选择什么 3D 坐标点,重建都会解决它。然而,我注意到一些奇怪的事情:当使用一系列 3D 点时,只有这些点的一个子集被正确重建。经过进一步调查,我发现只有在相机视野中的图像才能正确重建。视野是内在参数的函数(反之亦然)。

要使上述代码正常工作,请尝试按如下方式设置参数(内部参数来自我的相机):

...
const double f_x = 2746.;
const double f_y = 2748.;
const double c_x = 991.;
const double c_y = 619.;
...
const cv::Point3d point_single(10.0, -2.0, 30.0);
...

此外,不要忘记在相机坐标中负 y 坐标是 UP :)

问题 1 的答案:

我尝试使用

访问内在函数时出现错误
...
double f_x = intrinsic.at<double>(0, 0);
double f_y = intrinsic.at<double>(1, 1);
double c_x = intrinsic.at<double>(0, 3);
double c_y = intrinsic.at<double>(1, 3);
...

但是 intrinsic 是一个 3x3 矩阵。

故事的寓意 编写单元测试!!!