python 使用 OpenCV 对岛结构图像进行边缘检测
Edge detection on island structure image in python using OpenCV
我在 python 中遇到图像识别问题。我试图在下图中找到独立岛屿的面积:
https://drive.google.com/file/d/1GW6OCTMLtw9d8Opgtq3y4C5xshLP1siz/view?usp=sharing
为了分别求出所有岛屿的面积,我尝试求出岛屿的轮廓,然后计算面积。我根据轮廓区域的大小为每个轮廓赋予不同的颜色。然而,岛屿的轮廓往往会重叠,我无法正确地将它们分开。在这里您可以找到不同步骤的图片以及对图片的影响
参见:单独的过滤步骤:
我使用的代码(包括注释)如下:
# -*- coding: utf-8 -*-
"""
Created on Fri Jun 15 12:15:17 2018
@author: Gdehaan
"""
import matplotlib.pyplot as plt
import numpy as np
import glob
import cv2 as cv
from scipy.ndimage.morphology import binary_closing
from scipy.ndimage.morphology import binary_fill_holes
plt.close('all')
#Create a list of the basic colors to draw the contours
all_colors = [(255, 0 , 0), (0, 255 , 0), (0, 0, 255), (255, 0 , 255), (255, 255 , 0), (0, 255 , 255), (0, 0, 0)]
#Here we add random rgb colors to draw the contours later since we might have a lot of contours
col_count = 100
counter = 0
while counter < col_count:
all_colors.append(tuple(np.random.choice(range(256), size=3)))
counter+=1
pltcolors = [] #Here we convert the rgb colors to the matplotlib syntax between 0 and 1 instead of between 0 and 255
for i in range(len(all_colors)):
pltcolors.append(tuple([float(color)/255 for color in all_colors[i]]))
figures = glob.glob('*.tif')
figure_path = 'C:\Users\gdehaan\Desktop\SEM analysis test\zoomed test\{}'
for figure in figures:
if figure == '80nm.tif':
fig_title = str(figure.strip('.tif')) #Create a figure title based on the filename
fig_title_num = int(figure.strip('nm.tif')) #Get the numerical value of the filename (80)
pixel_scale = 16.5e-3 #Scalefactor for pixel size
path = figure_path.format(figure)
img_full = cv.imread(path , 0) #Import figure, 0 = GrayScale
img = img_full[:880, :1000] #Remove labels etc.
img_copy = np.copy(img) #create a copy of the image (not needed)
#Here we create a blanco canvas to draw the contours on later, with the same size as the orignal image
blanco = np.zeros([int(np.shape(img)[0]), int(np.shape(img)[1]), 3], dtype=np.uint8)
blanco.fill(255)
#We use a bilateral filter to smooth the image while maintaining sharp borders
blur = cv.bilateralFilter(img, 6, 75, 75)
#Threshold the image to a binary image with a threshold value determined by the average of the surrounding pixels
thresh = cv.adaptiveThreshold(blur, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, 11, 2)
#Here we fill the holes in the Islands
hole_structure = np.ones((3,3))
no_holes= np.array(binary_fill_holes(thresh, structure = hole_structure).astype(int), dtype = 'uint8')
#Here we close some of the smaller holes still present
closed = np.array(binary_closing(no_holes).astype(int), dtype = 'uint8')
#Here we find the contours based on a predetermined algorithm
im2, contours, hierarchy = cv.findContours(closed, cv.RETR_TREE, cv.CHAIN_APPROX_NONE)
#Here we calculate the area of all the contours
areas = []
for i in range(len(contours)):
areas.append(cv.contourArea(contours[i]))
avg_area = np.mean(areas)
#Here we sort the contours based on the area they have
areas_sorted, contours_sorted_tup = zip(*sorted(zip(areas, contours), key = lambda x: x[0]))
contours_sorted = list(contours_sorted_tup)
#Here we filter the islands below the average Island size
contours_sf = []
areas_sf = []
for i in range(len(contours_sorted)):
if areas_sorted[i] > 2*avg_area:
contours_sf.append(contours_sorted[i])
areas_sf.append(np.asarray(areas_sorted[i])*(pixel_scale**2))
#Create the histogram data
max_bin = max(areas_sf)+3 #Value for the maximal number of bins for the histogram
num_bins = float(max_bin)/30 #Value for number of bins
hist_data, bins = np.histogram(areas_sf, np.arange(0, max_bin, num_bins))
#Create a list of colors matching the bin sizes
colors_temp = []
for i,j in enumerate(hist_data):
colors_temp.append(int(j)*[all_colors[i]])
#Concatenate the list manually, numpy commands don't work well on list of tuples
colors = []
for i in range(len(colors_temp)):
for j in range(len(colors_temp[i])):
if colors_temp[i][j] != 0:
colors.append(colors_temp[i][j])
else:
colors.append((0, 0, 0))
#Here we draw the contours over the blanco canvas
for i in range(len(contours_sf)):
cv.drawContours(blanco, contours_sf[i], -1, colors[i], 2)
#The rest of the script is just plotting
plt.figure()
plt.suptitle(fig_title)
plt.subplot(231)
plt.title('Raw image')
plt.imshow(img, 'gray')
plt.xticks([])
plt.yticks([])
plt.subplot(232)
plt.title('Bilateral filtered')
plt.imshow(blur, 'gray')
plt.xticks([])
plt.yticks([])
plt.subplot(233)
plt.title('Thresholded')
plt.imshow(thresh, 'gray')
plt.xticks([])
plt.yticks([])
plt.subplot(234)
plt.title('Edges closed & Holes filled')
plt.imshow(closed, 'gray')
plt.xticks([])
plt.yticks([])
plt.subplot(235)
plt.title('Contours')
plt.imshow(blanco)
plt.xticks([])
plt.yticks([])
plt.subplot(236)
plt.title('Histogram')
for i in range(len(hist_data)):
plt.bar(bins[i], hist_data[i], width = bins[1], color = pltcolors[i])
plt.xlabel(r'Island size ($\mu$m$^{2}$)')
plt.ylabel('Frequency')
plt.axvline(x=np.mean(areas_sf), color = 'k', linestyle = '--', linewidth = 3)
figManager = plt.get_current_fig_manager()
figManager.window.showMaximized()
plt.figure()
plt.suptitle(fig_title, fontsize = 30)
plt.subplot(121)
plt.title('Contours' + '\n', linespacing=0.3, fontsize = 20)
plt.imshow(blanco)
plt.imshow(img, 'gray', alpha = 0.7)
plt.xticks([])
plt.yticks([])
plt.subplot(122)
plt.title('Histogram' + '\n', linespacing=0.3, fontsize = 20)
for i in range(len(hist_data)):
plt.bar(bins[i], hist_data[i], width = bins[1], color = pltcolors[i])
plt.xlabel(r'Island size ($\mu$m$^{2}$)', fontsize = 16)
plt.ylabel('Frequency', fontsize = 16)
plt.axvline(x=np.mean(areas_sf), color = 'k', linestyle = '--', linewidth = 3)
figManager = plt.get_current_fig_manager()
figManager.window.showMaximized()
问题出现在 'thresholded' 图像到 'edges closed & holes filled' 图像。似乎很多边缘从这里熔化在一起。我无法让它们很好地分开,因此我的轮廓开始重叠或根本无法识别。我可以依靠一些帮助来进一步分离岛屿 nicely/effectively。我尝试使用过滤器值,但未能获得更好的结果。
我尝试了一种稍微不同的方法。看看下面的代码。
注意:用于模糊和形态学操作的每个过滤器的内核大小是您可以调整以获得更好结果的参数。我写的方法是为了给你一些指导。我还建议使用 cv2.imshow()
可视化每一步,以便更好地了解正在发生的事情。
代码:
im = cv2.imread('80nm.tif')
imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
#--- Bilateral filtering ---
blur = cv2.bilateralFilter(imgray, 6, 15, 15)
#--- Perform Otsu threshold ---
ret, otsu_th = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
接下来我使用了Watershed implementation of OpenCV
中的一些步骤#--- noise removal ---
kernel = np.ones((3, 3), np.uint8)
opening = cv2.morphologyEx(otsu_th, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)), iterations = 2)
#--- sure background area ---
sure_bg = cv2.dilate(opening, kernel, iterations = 1)
cv2.imshow('sure_bg', sure_bg)
#--- Finding sure foreground area ---
dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
ret, sure_fg = cv2.threshold(dist_transform, 0.1 * dist_transform.max(), 255, 0)
cv2.normalize(dist_transform, dist_transform, 0, 1, cv2.NORM_MINMAX, dtype=cv2.CV_32F)
#cv2.imshow('dist_transform_normalized', dist_transform)
#cv2.imshow('sure_fg', sure_fg)
#--- Finding unknown region ---
sure_fg = np.uint8(sure_fg)
unknown = cv2.subtract(opening, sure_fg)
cv2.imshow('unknown', unknown)