循环遍历 R 中的 .dat 文件并仅提取特定数据作为列
Looping through .dat files in R and extracting only specific data as columns
我的本地驱动器中有 900 多个文件夹,每个文件夹都有一个 .dat 扩展名文件。我想遍历每个文件夹以访问其中的文件以仅获取特定数据并将该数据写入新文件。每个 .dat 文件看起来像这样 -
Authors:
# Pallavi Subhraveti
# Quang Ong
# Tim Holland
# Anamika Kothari
# Ingrid Keseler
# Ron Caspi
# Peter D Karp
# Please see the license agreement regarding the use of and distribution of
this file.
# The format of this file is defined at http://bioinformatics.ai.sri.com
# Version: 21.5
# File Name: compounds.dat
# Date and time generated: October 24, 2017, 14:52:45
# Attributes:
# UNIQUE-ID
# TYPES
# COMMON-NAME
# ABBREV-NAME
# ACCESSION-1
# ANTICODON
# ATOM-CHARGES
# ATOM-ISOTOPES
# CATALYZES
# CFG-ICON-COLOR
# CHEMICAL-FORMULA
# CITATIONS
# CODONS
# COFACTORS-OF
# MOLECULAR-WEIGHT
# MONOISOTOPIC-MW
[Data Chunk 1]
UNIQUE-ID - CPD0-1108
TYPES - D-Ribofuranose
COMMON-NAME - β-D-ribofuranose
ATOM-CHARGES - (9 -1)
ATOM-CHARGES - (6 1)
CHEMICAL-FORMULA - (C 5)
CHEMICAL-FORMULA - (H 14)
CHEMICAL-FORMULA - (N 1)
CHEMICAL-FORMULA - (O 6)
CHEMICAL-FORMULA - (P 1)
CREDITS - SRI
CREDITS - kaipa
DBLINKS - (CHEBI "10647" NIL |kothari| 3594051403 NIL NIL)
DBLINKS - (BIGG "37147" NIL |kothari| 3584718837 NIL NIL)
DBLINKS - (PUBCHEM "25200464" NIL |taltman| 3466375284 NIL NIL)
DBLINKS - (LIGAND-CPD "C01233" NIL |keseler| 3342798255 NIL NIL)
INCHI - InChI=1S/C5H14NO6P/c6-1-2-11-13(9,10)12-4-5(8)3-7/h5,7-8H,1-4,6H2,(H,9,10)
MOLECULAR-WEIGHT - 215.142
MONOISOTOPIC-MW - 216.0636987293
NON-STANDARD-INCHI - InChI=1S/C5H14NO6P/c6-1-2-11-13(9,10)12-4-5(8)3-7/h5,7-8H,1-4,6H2,(H,9,10)
SMILES - C(OP([O-])(OCC(CO)O)=O)C[N+]
SYNONYMS - sn-Glycero-3-phosphoethanolamine
SYNONYMS - 1-glycerophosphorylethanolamine\
[Data Chunk 2]
//
UNIQUE-ID - URIDINE
TYPES - Pyrimidine
....
....
每个文件大约有 18000 行(查看 Notepad++ 中的数据)。现在我想创建一个新文件并仅复制数据中的特定列。我只想将这些列复制到我新创建的文件中,文件应如下所示 -
UNIQUE-ID TYPES COMMON-NAME CHEMICAL-FORMULA BIGG ID CHEMSPIDER ID CAS ID CHEBI ID PUBCHEM ID MOLECULAR-WEIGHT MONOISOTOPIC-MW
CPD0-1108 D-Ribofuranose β-D-ribofuranose C5H14N1O6P1 37147 NA NA 10647 25200464 215.142 216.0636987293
URIDINE Pyrimidine ...
每个文件中的每个数据块不一定都包含我需要的所有列的信息,这就是为什么我在输出 table 中为这些列提到了 NA 我想要的。虽然如果我在这些列中得到空白值是完全没问题的,因为我可以稍后单独处理这些空白。
这是有数据的目录 -
File 1] -> C:\Users\robbie\Desktop\Organism_Data\aact1035194-hmpcyc\compounds.dat
File 2] -> C:\Users\robbie\Desktop\Organism_Data\aaph679198-hmpcyc\compounds.dat
File 3] -> C:\Users\robbie\Desktop\Organism_Data\yreg1002368-hmpcyc\compounds.dat
File 4] -> C:\Users\robbie\Desktop\Organism_Data\tden699187-hmpcyc\compounds.dat
...
...
我真的倾向于在 R 中使用 dir
函数引用 this post 但是我很困惑在编写代码时将什么放入函数的模式参数有机体名称(文件夹名称)非常奇怪且不一致。
对于获得所需输出的任何帮助,我们将不胜感激。我正在考虑在 R 中执行此操作的方法,但如果我在 python 中获得好的建议和处理方法,我也愿意在 python 中尝试此操作。非常感谢您的帮助!
编辑:
Link 到数据 - Data
一个文件
将其分解为几个逻辑操作:
text2chunks <- function(txt) {
chunks <- split(txt, cumsum(grepl("^\[Data Chunk.*\]$", txt)))
Filter(function(a) grepl("^\[Data Chunk.*\]$", a[1]), chunks)
}
chunk2dataframe <- function(vec, hdrs = NULL, sep = " - ") {
s <- stringi::stri_split(vec, fixed=sep, n=2L)
s <- Filter(function(a) length(a) == 2L, s)
df <- as.data.frame(setNames(lapply(s, `[[`, 2), sapply(s, `[[`, 1)),
stringsAsFactors=FALSE)
if (! is.null(hdrs)) df <- df[ names(df) %in% make.names(hdrs) ]
df
}
hdrs
是您要保留的列名的可选向量;如果未提供(或 NULL
),则所有 key/value 对作为列返回。
hdrs <- c("UNIQUE-ID", "TYPES", "COMMON-NAME")
使用数据(如下),我有 lines
这是来自单个文件的 character
向量:
head(lines)
# [1] "Authors:"
# [2] "# Pallavi Subhraveti"
# [3] "# Quang Ong"
# [4] "# Please see the license agreement regarding the use of and distribution of this file."
# [5] "# The format of this file is defined at http://bioinformatics.ai.sri.com"
# [6] "# Version: 21.5"
str(text2chunks(lines))
# List of 2
# $ 1: chr [1:5] "[Data Chunk 1]" "UNIQUE-ID - CPD0-1108" "TYPES - D-Ribofuranose" "COMMON-NAME - β-D-ribofuranose" ...
# $ 2: chr [1:6] "[Data Chunk 2]" "// something out of place here?" "UNIQUE-ID - URIDINE" "TYPES - Pyrimidine" ...
str(lapply(text2chunks(lines), chunk2dataframe, hdrs=hdrs))
# List of 2
# $ 1:'data.frame': 1 obs. of 3 variables:
# ..$ UNIQUE.ID : chr "CPD0-1108"
# ..$ TYPES : chr "D-Ribofuranose"
# ..$ COMMON.NAME: chr "β-D-ribofuranose"
# $ 2:'data.frame': 1 obs. of 3 variables:
# ..$ UNIQUE.ID : chr "URIDINE"
# ..$ TYPES : chr "Pyrimidine"
# ..$ COMMON.NAME: chr "β-D-ribofuranose or something"
最终产品:
dplyr::bind_rows(lapply(text2chunks(lines), chunk2dataframe, hdrs=hdrs))
# UNIQUE.ID TYPES COMMON.NAME
# 1 CPD0-1108 D-Ribofuranose β-D-ribofuranose
# 2 URIDINE Pyrimidine β-D-ribofuranose or something
由于您想在许多函数上迭代它,因此为此创建一个方便的函数是有意义的:
text2dataframe <- function(txt) {
dplyr::bind_rows(lapply(text2chunks(txt), chunk2dataframe, hdrs=hdrs))
}
许多文件
未经测试,但应该有效:
files <- list.files(path="C:/Users/robbie/Desktop/Organism_Data/",
pattern="compounds.dat", recursive=TRUE, full.names=TRUE)
alldata <- lapply(files, readLines)
allframes <- lapply(alldata, text2dataframe)
oneframe <- dplyr::bind_rows(allframes)
备注:
- 我使用
stringi::stri_split
而不是 strsplit
只是为了方便参数 n=
;使用几行额外的代码,在 base R 中做同样的事情并不难。
- 我正在使用
dplyr::bind_rows
,因为它可以很好地处理缺失的列和不同的顺序;基础 rbind.data.frame
可以与一些额外的 effort/care. 一起使用
data.frame
-izing 东西往往会稍微调整列名,请注意。
数据:
# lines <- readLines("some_filename.dat")
fulltext <- 'Authors:
# Pallavi Subhraveti
# Quang Ong
# Please see the license agreement regarding the use of and distribution of this file.
# The format of this file is defined at http://bioinformatics.ai.sri.com
# Version: 21.5
# File Name: compounds.dat
# Date and time generated: October 24, 2017, 14:52:45
# Attributes:
# UNIQUE-ID
# TYPES
[Data Chunk 1]
UNIQUE-ID - CPD0-1108
TYPES - D-Ribofuranose
COMMON-NAME - β-D-ribofuranose
DO-NOT-CARE - 42
[Data Chunk 2]
// something out of place here?
UNIQUE-ID - URIDINE
TYPES - Pyrimidine
COMMON-NAME - β-D-ribofuranose or something
DO-NOT-CARE - 43
'
lines <- strsplit(fulltext, '[\r\n]+')[[1]]
另一种方法,在这种情况下,它只读取您提供的文件,但它可以读取多个文件。
我添加了一些中间结果来显示代码实际在做什么...
library(tidyverse)
library(data.table)
library(zoo)
# create a data.frame with the desired files
filenames <- list.files( path = getwd(), pattern = "*.dat$", recursive = TRUE, full.names = TRUE )
# > filenames
#[1] "C:/Users/********/Documents/Git/udls2/test.dat"
#read in the files, using data.table's fread.. here I grep lines starting with UNIQUE-ID or TYPES. create your desired regex-pattern
pattern <- "^UNIQUE-ID|^TYPES"
content.list <- lapply( filenames, function(x) fread( x, sep = "\n", header = FALSE )[grepl( pattern, V1 )] )
# > content.list
# [[1]]
# V1
# 1: UNIQUE-ID - CPD0-1108
# 2: TYPES - D-Ribofuranose
# 3: UNIQUE-ID - URIDINE
# 4: TYPES - Pyrimidine
#add all content to a single data.table
dt <- rbindlist( content.list )
# > dt
# V1
# 1: UNIQUE-ID - CPD0-1108
# 2: TYPES - D-Ribofuranose
# 3: UNIQUE-ID - URIDINE
# 4: TYPES - Pyrimidine
#split the text in a variable-name and it's content
dt <- dt %>% separate( V1, into = c("var", "content"), sep = " - ")
# > dt
# var content
# 1: UNIQUE-ID CPD0-1108
# 2: TYPES D-Ribofuranose
# 3: UNIQUE-ID URIDINE
# 4: TYPES Pyrimidine
#add an increasing id for every UNIQUE-ID
dt[var == "UNIQUE-ID", id := seq.int( 1: nrow( dt[var=="UNIQUE-ID", ]))]
# > dt
# var content id
# 1: UNIQUE-ID CPD0-1108 1
# 2: TYPES D-Ribofuranose NA
# 3: UNIQUE-ID URIDINE 2
# 4: TYPES Pyrimidine NA
#fill down id vor all variables found
dt[, id := na.locf( dt$id )]
# > dt
# var content id
# 1: UNIQUE-ID CPD0-1108 1
# 2: TYPES D-Ribofuranose 1
# 3: UNIQUE-ID URIDINE 2
# 4: TYPES Pyrimidine 2
#cast
dcast(dt, id ~ var, value.var = "content")
# id TYPES UNIQUE-ID
# 1: 1 D-Ribofuranose CPD0-1108
# 2: 2 Pyrimidine URIDINE
我的本地驱动器中有 900 多个文件夹,每个文件夹都有一个 .dat 扩展名文件。我想遍历每个文件夹以访问其中的文件以仅获取特定数据并将该数据写入新文件。每个 .dat 文件看起来像这样 -
Authors:
# Pallavi Subhraveti
# Quang Ong
# Tim Holland
# Anamika Kothari
# Ingrid Keseler
# Ron Caspi
# Peter D Karp
# Please see the license agreement regarding the use of and distribution of
this file.
# The format of this file is defined at http://bioinformatics.ai.sri.com
# Version: 21.5
# File Name: compounds.dat
# Date and time generated: October 24, 2017, 14:52:45
# Attributes:
# UNIQUE-ID
# TYPES
# COMMON-NAME
# ABBREV-NAME
# ACCESSION-1
# ANTICODON
# ATOM-CHARGES
# ATOM-ISOTOPES
# CATALYZES
# CFG-ICON-COLOR
# CHEMICAL-FORMULA
# CITATIONS
# CODONS
# COFACTORS-OF
# MOLECULAR-WEIGHT
# MONOISOTOPIC-MW
[Data Chunk 1]
UNIQUE-ID - CPD0-1108
TYPES - D-Ribofuranose
COMMON-NAME - β-D-ribofuranose
ATOM-CHARGES - (9 -1)
ATOM-CHARGES - (6 1)
CHEMICAL-FORMULA - (C 5)
CHEMICAL-FORMULA - (H 14)
CHEMICAL-FORMULA - (N 1)
CHEMICAL-FORMULA - (O 6)
CHEMICAL-FORMULA - (P 1)
CREDITS - SRI
CREDITS - kaipa
DBLINKS - (CHEBI "10647" NIL |kothari| 3594051403 NIL NIL)
DBLINKS - (BIGG "37147" NIL |kothari| 3584718837 NIL NIL)
DBLINKS - (PUBCHEM "25200464" NIL |taltman| 3466375284 NIL NIL)
DBLINKS - (LIGAND-CPD "C01233" NIL |keseler| 3342798255 NIL NIL)
INCHI - InChI=1S/C5H14NO6P/c6-1-2-11-13(9,10)12-4-5(8)3-7/h5,7-8H,1-4,6H2,(H,9,10)
MOLECULAR-WEIGHT - 215.142
MONOISOTOPIC-MW - 216.0636987293
NON-STANDARD-INCHI - InChI=1S/C5H14NO6P/c6-1-2-11-13(9,10)12-4-5(8)3-7/h5,7-8H,1-4,6H2,(H,9,10)
SMILES - C(OP([O-])(OCC(CO)O)=O)C[N+]
SYNONYMS - sn-Glycero-3-phosphoethanolamine
SYNONYMS - 1-glycerophosphorylethanolamine\
[Data Chunk 2]
//
UNIQUE-ID - URIDINE
TYPES - Pyrimidine
....
....
每个文件大约有 18000 行(查看 Notepad++ 中的数据)。现在我想创建一个新文件并仅复制数据中的特定列。我只想将这些列复制到我新创建的文件中,文件应如下所示 -
UNIQUE-ID TYPES COMMON-NAME CHEMICAL-FORMULA BIGG ID CHEMSPIDER ID CAS ID CHEBI ID PUBCHEM ID MOLECULAR-WEIGHT MONOISOTOPIC-MW
CPD0-1108 D-Ribofuranose β-D-ribofuranose C5H14N1O6P1 37147 NA NA 10647 25200464 215.142 216.0636987293
URIDINE Pyrimidine ...
每个文件中的每个数据块不一定都包含我需要的所有列的信息,这就是为什么我在输出 table 中为这些列提到了 NA 我想要的。虽然如果我在这些列中得到空白值是完全没问题的,因为我可以稍后单独处理这些空白。
这是有数据的目录 -
File 1] -> C:\Users\robbie\Desktop\Organism_Data\aact1035194-hmpcyc\compounds.dat
File 2] -> C:\Users\robbie\Desktop\Organism_Data\aaph679198-hmpcyc\compounds.dat
File 3] -> C:\Users\robbie\Desktop\Organism_Data\yreg1002368-hmpcyc\compounds.dat
File 4] -> C:\Users\robbie\Desktop\Organism_Data\tden699187-hmpcyc\compounds.dat
...
...
我真的倾向于在 R 中使用 dir
函数引用 this post 但是我很困惑在编写代码时将什么放入函数的模式参数有机体名称(文件夹名称)非常奇怪且不一致。
对于获得所需输出的任何帮助,我们将不胜感激。我正在考虑在 R 中执行此操作的方法,但如果我在 python 中获得好的建议和处理方法,我也愿意在 python 中尝试此操作。非常感谢您的帮助!
编辑: Link 到数据 - Data
一个文件
将其分解为几个逻辑操作:
text2chunks <- function(txt) {
chunks <- split(txt, cumsum(grepl("^\[Data Chunk.*\]$", txt)))
Filter(function(a) grepl("^\[Data Chunk.*\]$", a[1]), chunks)
}
chunk2dataframe <- function(vec, hdrs = NULL, sep = " - ") {
s <- stringi::stri_split(vec, fixed=sep, n=2L)
s <- Filter(function(a) length(a) == 2L, s)
df <- as.data.frame(setNames(lapply(s, `[[`, 2), sapply(s, `[[`, 1)),
stringsAsFactors=FALSE)
if (! is.null(hdrs)) df <- df[ names(df) %in% make.names(hdrs) ]
df
}
hdrs
是您要保留的列名的可选向量;如果未提供(或 NULL
),则所有 key/value 对作为列返回。
hdrs <- c("UNIQUE-ID", "TYPES", "COMMON-NAME")
使用数据(如下),我有 lines
这是来自单个文件的 character
向量:
head(lines)
# [1] "Authors:"
# [2] "# Pallavi Subhraveti"
# [3] "# Quang Ong"
# [4] "# Please see the license agreement regarding the use of and distribution of this file."
# [5] "# The format of this file is defined at http://bioinformatics.ai.sri.com"
# [6] "# Version: 21.5"
str(text2chunks(lines))
# List of 2
# $ 1: chr [1:5] "[Data Chunk 1]" "UNIQUE-ID - CPD0-1108" "TYPES - D-Ribofuranose" "COMMON-NAME - β-D-ribofuranose" ...
# $ 2: chr [1:6] "[Data Chunk 2]" "// something out of place here?" "UNIQUE-ID - URIDINE" "TYPES - Pyrimidine" ...
str(lapply(text2chunks(lines), chunk2dataframe, hdrs=hdrs))
# List of 2
# $ 1:'data.frame': 1 obs. of 3 variables:
# ..$ UNIQUE.ID : chr "CPD0-1108"
# ..$ TYPES : chr "D-Ribofuranose"
# ..$ COMMON.NAME: chr "β-D-ribofuranose"
# $ 2:'data.frame': 1 obs. of 3 variables:
# ..$ UNIQUE.ID : chr "URIDINE"
# ..$ TYPES : chr "Pyrimidine"
# ..$ COMMON.NAME: chr "β-D-ribofuranose or something"
最终产品:
dplyr::bind_rows(lapply(text2chunks(lines), chunk2dataframe, hdrs=hdrs))
# UNIQUE.ID TYPES COMMON.NAME
# 1 CPD0-1108 D-Ribofuranose β-D-ribofuranose
# 2 URIDINE Pyrimidine β-D-ribofuranose or something
由于您想在许多函数上迭代它,因此为此创建一个方便的函数是有意义的:
text2dataframe <- function(txt) {
dplyr::bind_rows(lapply(text2chunks(txt), chunk2dataframe, hdrs=hdrs))
}
许多文件
未经测试,但应该有效:
files <- list.files(path="C:/Users/robbie/Desktop/Organism_Data/",
pattern="compounds.dat", recursive=TRUE, full.names=TRUE)
alldata <- lapply(files, readLines)
allframes <- lapply(alldata, text2dataframe)
oneframe <- dplyr::bind_rows(allframes)
备注:
- 我使用
stringi::stri_split
而不是strsplit
只是为了方便参数n=
;使用几行额外的代码,在 base R 中做同样的事情并不难。 - 我正在使用
dplyr::bind_rows
,因为它可以很好地处理缺失的列和不同的顺序;基础rbind.data.frame
可以与一些额外的 effort/care. 一起使用
data.frame
-izing 东西往往会稍微调整列名,请注意。
数据:
# lines <- readLines("some_filename.dat")
fulltext <- 'Authors:
# Pallavi Subhraveti
# Quang Ong
# Please see the license agreement regarding the use of and distribution of this file.
# The format of this file is defined at http://bioinformatics.ai.sri.com
# Version: 21.5
# File Name: compounds.dat
# Date and time generated: October 24, 2017, 14:52:45
# Attributes:
# UNIQUE-ID
# TYPES
[Data Chunk 1]
UNIQUE-ID - CPD0-1108
TYPES - D-Ribofuranose
COMMON-NAME - β-D-ribofuranose
DO-NOT-CARE - 42
[Data Chunk 2]
// something out of place here?
UNIQUE-ID - URIDINE
TYPES - Pyrimidine
COMMON-NAME - β-D-ribofuranose or something
DO-NOT-CARE - 43
'
lines <- strsplit(fulltext, '[\r\n]+')[[1]]
另一种方法,在这种情况下,它只读取您提供的文件,但它可以读取多个文件。
我添加了一些中间结果来显示代码实际在做什么...
library(tidyverse)
library(data.table)
library(zoo)
# create a data.frame with the desired files
filenames <- list.files( path = getwd(), pattern = "*.dat$", recursive = TRUE, full.names = TRUE )
# > filenames
#[1] "C:/Users/********/Documents/Git/udls2/test.dat"
#read in the files, using data.table's fread.. here I grep lines starting with UNIQUE-ID or TYPES. create your desired regex-pattern
pattern <- "^UNIQUE-ID|^TYPES"
content.list <- lapply( filenames, function(x) fread( x, sep = "\n", header = FALSE )[grepl( pattern, V1 )] )
# > content.list
# [[1]]
# V1
# 1: UNIQUE-ID - CPD0-1108
# 2: TYPES - D-Ribofuranose
# 3: UNIQUE-ID - URIDINE
# 4: TYPES - Pyrimidine
#add all content to a single data.table
dt <- rbindlist( content.list )
# > dt
# V1
# 1: UNIQUE-ID - CPD0-1108
# 2: TYPES - D-Ribofuranose
# 3: UNIQUE-ID - URIDINE
# 4: TYPES - Pyrimidine
#split the text in a variable-name and it's content
dt <- dt %>% separate( V1, into = c("var", "content"), sep = " - ")
# > dt
# var content
# 1: UNIQUE-ID CPD0-1108
# 2: TYPES D-Ribofuranose
# 3: UNIQUE-ID URIDINE
# 4: TYPES Pyrimidine
#add an increasing id for every UNIQUE-ID
dt[var == "UNIQUE-ID", id := seq.int( 1: nrow( dt[var=="UNIQUE-ID", ]))]
# > dt
# var content id
# 1: UNIQUE-ID CPD0-1108 1
# 2: TYPES D-Ribofuranose NA
# 3: UNIQUE-ID URIDINE 2
# 4: TYPES Pyrimidine NA
#fill down id vor all variables found
dt[, id := na.locf( dt$id )]
# > dt
# var content id
# 1: UNIQUE-ID CPD0-1108 1
# 2: TYPES D-Ribofuranose 1
# 3: UNIQUE-ID URIDINE 2
# 4: TYPES Pyrimidine 2
#cast
dcast(dt, id ~ var, value.var = "content")
# id TYPES UNIQUE-ID
# 1: 1 D-Ribofuranose CPD0-1108
# 2: 2 Pyrimidine URIDINE