使用尽可能简单的索引转置 python pandas 中的一列

Transposing one column in python pandas with the simplest index possible

我有以下数据(data_current):

import pandas as pd
import numpy as np

data_current=pd.DataFrame({'medicine':['green tea','fried tomatoes','meditation','meditation'],'disease':['acne','hypertension', 'cancer','lupus']})
data_current

我想做的是转置其中一列,这样我就不会用多行来表示相同的药物和不同的疾病,而是用一行来表示每种药物,并用几列表示疾病。保持索引尽可能简单也很重要,即 0,1,2... 即我不想将 'medicines' 指定为索引列,因为我会将它合并到其他键上。 所以,我需要得到 data_needed

data_needed=pd.DataFrame({'medicine':['green tea','fried tomatoes','meditation'],'disease_1':['acne','hypertension','cancer'], 'disease_2':['np.nan','np.nan','lupus']})
data_needed

我想你想要一个支点 table。查看此 link 了解更多信息 --> http://pandas.pydata.org/pandas-docs/stable/reshaping.html

你找到这个 acceptable 的输出了吗?

data_current.pivot(index='medicine', columns='disease', values='disease')

dc = data_current
dc['disease_header'] = dc.diseases.replace(
                       dict(zip(diseases, 
                                map(lambda v: 'diseases_%d' %v, range(len(diseases))
                           )))

这会给我们:

In [548]: dc
Out[548]: 
        disease        medicine disease_header
0          acne       green tea     diseases_0
1  hypertension  fried tomatoes     diseases_1
2        cancer      meditation     diseases_2
3         lupus      meditation     diseases_3

而且,我们终于可以转向了:

    In [547]: dc.pivot(columns='disease_header', index='medicine', values='disease').reset_index()
Out[547]: 
disease_header        medicine diseases_0    diseases_1 diseases_2 diseases_3
0               fried tomatoes        NaN  hypertension        NaN        NaN
1                    green tea       acne           NaN        NaN        NaN
2                   meditation        NaN           NaN     cancer      lupus

这里有一个实现输出

首先,在 medicinegroupby 并获取 disease 作为列表

In [368]: md = (data_current.groupby('medicine')
                            .apply(lambda x: x['disease'].tolist())
                            .reset_index())

In [369]: md
Out[369]:
         medicine                0
0  fried tomatoes   [hypertension]
1       green tea           [acne]
2      meditation  [cancer, lupus]

然后将列中的列表转换为单独的列

In [370]: dval = pd.DataFrame(md[0].tolist(), )

In [371]: dval
Out[371]:
              0      1
0  hypertension   None
1          acne   None
2        cancer  lupus

现在,您可以 concat -- mddval

In [372]: md = md.drop(0, axis=1)

In [373]: data_final = pd.concat([md, dval], axis=1)

然后,根据需要重命名列。

In [374]: data_final.columns = ['medicine', 'disease_1', 'disease_2']

In [375]: data_final
Out[375]:
         medicine     disease_1 disease_2
0  fried tomatoes  hypertension      None
1       green tea          acne      None
2      meditation        cancer     lupus