使用 python 量化情绪分析

Quantifying sentiment analysis using python

我一直在 python 中使用 NLTK 做情绪分析,它只有正面、中性和负面 class,如果我们想做情绪分析并有一个数字来显示怎么办多少句子可以是消极的或积极的。有点将其视为回归问题。有没有预先训练好的图书馆可以这样做?

我知道有几种方法可以做到这一点:

  • Vader returns 作为等级的分数(在 0 和 1 之间)
  • Stanford NLP returns 分类(即 0、1、2、3)。

一种 NLTK 方式:

from nltk.sentiment.vader import SentimentIntensityAnalyzer as sia
sentences = ['This is the worst lunch I ever had!',
             'This is the best lunch I have ever had!!',
             'I don\'t like this lunch.',
             'I eat food for lunch.',
             'Red is a color.',
             'A really bad, horrible book, the plot was .']

hal = sia()
for sentence in sentences:
    print(sentence)
    ps = hal.polarity_scores(sentence)
    for k in sorted(ps):
        print('\t{}: {:>1.4}'.format(k, ps[k]), end='  ')
    print()

示例输出:

This is the worst lunch I ever had!
    compound: -0.6588   neg: 0.423      neu: 0.577      pos: 0.0  

Stanford-NLP,Python方式:

(请注意,这种方式需要您启动 CoreNLP 服务器实例到 运行 例如:java -mx1g -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer -port 9000 -timeout 15000

from pycorenlp import StanfordCoreNLP
stanford = StanfordCoreNLP('http://localhost:9000')

for sentence in sentences:
    print(sentence)
    result = stanford.annotate(sentence,
                               properties={
                                'annotators': 'sentiment',
                                'outputFormat': 'json',
                                'timeout': '5000'
                               })
    for s in result['sentences']:
        score = (s['sentimentValue'], s['sentiment'])
    print(f'\tScore: {score[0]}, Value: {score[1]}')

示例输出:

This is the worst lunch I ever had!
    Score: 0, Value: Verynegative