预期密集有形状但有形状的阵列

expected dense to have shape but got array with shape

当 运行 keras 中的文本分类模型时调用 model.predict 函数时出现以下错误。我到处搜索,但它不适合我。

ValueError: Error when checking input: expected dense_1_input to have shape (100,) but got array with shape (1,)

我的数据有 5 个 类,总共只有 15 个例子。下面是数据集

             query        tags
0               hi       intro
1      how are you       wellb
2            hello       intro
3        what's up       wellb
4       how's life       wellb
5              bye          gb
6    see you later          gb
7         good bye          gb
8           thanks   gratitude
9        thank you   gratitude
10  that's helpful   gratitude
11      I am great  revertfine
12            fine  revertfine
13       I am fine  revertfine
14            good  revertfine

这是我模型的代码

from keras.preprocessing.text import Tokenizer
from sklearn.preprocessing import LabelBinarizer
from keras.models import Sequential
import pandas as pd
from keras.layers import Dense, Activation

data = pd.read_csv('text_class.csv')
train_text = data['query']
train_labels = data['tags']

tokenize = Tokenizer(num_words=100)
tokenize.fit_on_texts(train_text)

x_data = tokenize.texts_to_matrix(train_text)

encoder = LabelBinarizer()
encoder.fit(train_labels)
y_data = encoder.transform(train_labels)

model = Sequential()
model.add(Dense(512, input_shape=(100,)))
model.add(Activation('relu'))
model.add(Dense(5))
model.add(Activation('softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
model.fit(x_data, y_data, batch_size=8, epochs=10)

predictions = model.predict(x_data[0])
tag_labels = encoder.classes_
predicted_tags = tag_labels[np.argmax(predictions)]
print (predicted_tags)

我无法弄清楚问题出在哪里以及如何解决它。

predictions = model.predict(x_data)改为predictions = model.predict(x_data[0:1])

你的 NN 中的输入层有 100 个神经元,但你的输入似乎只有 (1,) 的形状,因此你需要更改输入形状

x_data 是形状为 (15, 100)

的二维数组
  print(x_data.shape) 

x_data[0] 是形状为 (100, )

的一维数组
  print(x_data[0].shape) 

这会带来问题。

使用切片 x_data[0:1] 将其作为二维数组,形状为 (1, 100)

 print(x_data[0:1].shape) 

它会起作用

 predictions = model.predict(x_data[0:1])