从 Tensorflow 中的一个 TFRecord 示例中读取多个特征向量
Reading multiple feature vectors from one TFRecord example in Tensorflow
我知道如何将每个示例的一个特征存储在 tfrecord 文件中,然后使用如下方式读取它:
import tensorflow as tf
import numpy as np
import os
# This is used to parse an example from tfrecords
def parse(serialized_example):
features = tf.parse_single_example(
serialized_example,
features ={
"label": tf.FixedLenFeature([], tf.string, default_value=""),
"feat": tf.FixedLenFeature([], tf.string, default_value="")
})
feat = tf.decode_raw(features['feat'], tf.float64)
label = tf.decode_raw(features['label'], tf.int64)
return feat, label
################# Generate data
cwd = os.getcwd()
numdata = 10
with tf.python_io.TFRecordWriter(os.path.join(cwd, 'data.tfrecords')) as writer:
for i in range(numdata):
feat = np.random.randn(2)
label = np.array(np.random.randint(0,9))
featb = feat.tobytes()
labelb = label.tobytes()
import pudb.b
example = tf.train.Example(features=tf.train.Features(
feature={
'feat': tf.train.Feature(bytes_list=tf.train.BytesList(value=[featb])),
'label': tf.train.Feature(bytes_list=tf.train.BytesList(value=[labelb])),}))
writer.write(example.SerializeToString())
print('wrote f {}, l {}'.format(feat, label))
print('Done writing! Start reading and printing data')
################# Read data
filename = ['data.tfrecords']
dataset = tf.data.TFRecordDataset(filename).map(parse)
dataset = dataset.batch(100)
iterator = dataset.make_initializable_iterator()
feat, label = iterator.get_next()
with tf.Session() as sess:
sess.run(iterator.initializer)
try:
while True:
example = sess.run((feat,label))
print example
except tf.errors.OutOfRangeError:
pass
如果每个示例中都有多个特征向量+标签,我该怎么办。例如,在上面的代码中,如果将 feat 存储为二维数组。我仍然想做和以前一样的事情,即用每个标签一个特征来训练 DNN,但是 tfrecords 文件中的每个示例都有多个特征和多个标签。这应该很简单,但我在使用 tfrecords 解压 tensorflow 中的多个功能时遇到了问题。
首先,请注意 np.ndarray.tobytes() 将多维数组展平为列表,即
feat = np.random.randn(N, 2)
reshaped = np.reshape(feat, (N*2,))
feat.tobytes() == reshaped.tobytes() ## True
因此,如果您有一个以 TFRecord 格式保存为字节的 N*2 数组,则必须在解析后对其进行整形。
如果这样做,您可以取消对 tf.data.Dataset 的元素进行批处理,这样每次迭代都会为您提供一个特征和一个标签。您的代码应如下所示:
# This is used to parse an example from tfrecords
def parse(serialized_example):
features = tf.parse_single_example(
serialized_example,
features ={
"label": tf.FixedLenFeature([], tf.string, default_value=""),
"feat": tf.FixedLenFeature([], tf.string, default_value="")
})
feat = tf.decode_raw(features['feat'], tf.float64) # array of shape (N*2, )
feat = tf.reshape(feat, (N, 2)) # array of shape (N, 2)
label = tf.decode_raw(features['label'], tf.int64) # array of shape (N, )
return feat, label
################# Generate data
cwd = os.getcwd()
numdata = 10
with tf.python_io.TFRecordWriter(os.path.join(cwd, 'data.tfrecords')) as writer:
for i in range(numdata):
feat = np.random.randn(N, 2)
label = np.array(np.random.randint(0,9, N))
featb = feat.tobytes()
labelb = label.tobytes()
example = tf.train.Example(features=tf.train.Features(
feature={
'feat': tf.train.Feature(bytes_list=tf.train.BytesList(value=[featb])),
'label': tf.train.Feature(bytes_list=tf.train.BytesList(value=[labelb])),}))
writer.write(example.SerializeToString())
print('wrote f {}, l {}'.format(feat, label))
print('Done writing! Start reading and printing data')
################# Read data
filename = ['data.tfrecords']
dataset = tf.data.TFRecordDataset(filename).map(parse).apply(tf.contrib.data.unbatch())
... etc
我知道如何将每个示例的一个特征存储在 tfrecord 文件中,然后使用如下方式读取它:
import tensorflow as tf
import numpy as np
import os
# This is used to parse an example from tfrecords
def parse(serialized_example):
features = tf.parse_single_example(
serialized_example,
features ={
"label": tf.FixedLenFeature([], tf.string, default_value=""),
"feat": tf.FixedLenFeature([], tf.string, default_value="")
})
feat = tf.decode_raw(features['feat'], tf.float64)
label = tf.decode_raw(features['label'], tf.int64)
return feat, label
################# Generate data
cwd = os.getcwd()
numdata = 10
with tf.python_io.TFRecordWriter(os.path.join(cwd, 'data.tfrecords')) as writer:
for i in range(numdata):
feat = np.random.randn(2)
label = np.array(np.random.randint(0,9))
featb = feat.tobytes()
labelb = label.tobytes()
import pudb.b
example = tf.train.Example(features=tf.train.Features(
feature={
'feat': tf.train.Feature(bytes_list=tf.train.BytesList(value=[featb])),
'label': tf.train.Feature(bytes_list=tf.train.BytesList(value=[labelb])),}))
writer.write(example.SerializeToString())
print('wrote f {}, l {}'.format(feat, label))
print('Done writing! Start reading and printing data')
################# Read data
filename = ['data.tfrecords']
dataset = tf.data.TFRecordDataset(filename).map(parse)
dataset = dataset.batch(100)
iterator = dataset.make_initializable_iterator()
feat, label = iterator.get_next()
with tf.Session() as sess:
sess.run(iterator.initializer)
try:
while True:
example = sess.run((feat,label))
print example
except tf.errors.OutOfRangeError:
pass
如果每个示例中都有多个特征向量+标签,我该怎么办。例如,在上面的代码中,如果将 feat 存储为二维数组。我仍然想做和以前一样的事情,即用每个标签一个特征来训练 DNN,但是 tfrecords 文件中的每个示例都有多个特征和多个标签。这应该很简单,但我在使用 tfrecords 解压 tensorflow 中的多个功能时遇到了问题。
首先,请注意 np.ndarray.tobytes() 将多维数组展平为列表,即
feat = np.random.randn(N, 2)
reshaped = np.reshape(feat, (N*2,))
feat.tobytes() == reshaped.tobytes() ## True
因此,如果您有一个以 TFRecord 格式保存为字节的 N*2 数组,则必须在解析后对其进行整形。
如果这样做,您可以取消对 tf.data.Dataset 的元素进行批处理,这样每次迭代都会为您提供一个特征和一个标签。您的代码应如下所示:
# This is used to parse an example from tfrecords
def parse(serialized_example):
features = tf.parse_single_example(
serialized_example,
features ={
"label": tf.FixedLenFeature([], tf.string, default_value=""),
"feat": tf.FixedLenFeature([], tf.string, default_value="")
})
feat = tf.decode_raw(features['feat'], tf.float64) # array of shape (N*2, )
feat = tf.reshape(feat, (N, 2)) # array of shape (N, 2)
label = tf.decode_raw(features['label'], tf.int64) # array of shape (N, )
return feat, label
################# Generate data
cwd = os.getcwd()
numdata = 10
with tf.python_io.TFRecordWriter(os.path.join(cwd, 'data.tfrecords')) as writer:
for i in range(numdata):
feat = np.random.randn(N, 2)
label = np.array(np.random.randint(0,9, N))
featb = feat.tobytes()
labelb = label.tobytes()
example = tf.train.Example(features=tf.train.Features(
feature={
'feat': tf.train.Feature(bytes_list=tf.train.BytesList(value=[featb])),
'label': tf.train.Feature(bytes_list=tf.train.BytesList(value=[labelb])),}))
writer.write(example.SerializeToString())
print('wrote f {}, l {}'.format(feat, label))
print('Done writing! Start reading and printing data')
################# Read data
filename = ['data.tfrecords']
dataset = tf.data.TFRecordDataset(filename).map(parse).apply(tf.contrib.data.unbatch())
... etc