使用 Tensorflow 中的 GRU 将先前时间步长的梯度传递到当前时间步长

Carrying gradients from previous time steps to current time steps with GRU in Tensorflow

我在tensorflow中有以下模型:

def output_layer(input_layer, num_labels):
    '''
    :param input_layer: 2D tensor
    :param num_labels: int. How many output labels in total? (10 for cifar10 and 100 for cifar100)
    :return: output layer Y = WX + B
    '''
    input_dim = input_layer.get_shape().as_list()[-1]
    fc_w = create_variables(name='fc_weights', shape=[input_dim, num_labels],
                            initializer=tf.uniform_unit_scaling_initializer(factor=1.0))
    fc_b = create_variables(name='fc_bias', shape=[num_labels], initializer=tf.zeros_initializer())

    fc_h = tf.matmul(input_layer, fc_w) + fc_b
    return fc_h

def model(input_features):

    with tf.variable_scope("GRU"):
        cell1 = tf.nn.rnn_cell.GRUCell(gru1_cell_size)

        cell2 = tf.nn.rnn_cell.GRUCell(gru2_cell_size)

        mcell = tf.nn.rnn_cell.MultiRNNCell([cell1, cell2], state_is_tuple=False)

        # shape=(?, 64 + 32) 
        initial_state = tf.placeholder(shape=[None, gru1_cell_size + gru2_cell_size], dtype=tf.float32, name="initial_state")
        output, new_state = tf.nn.dynamic_rnn(mcell, input_features, dtype=tf.float32, initial_state=initial_state)

    with tf.variable_scope("output_reshaped"):
        # before, shape: (34, 1768, 32), after, shape: (34 * 1768, 32)
        output = tf.reshape(output, shape=[-1, gru2_cell_size])

    with tf.variable_scope("output_layer"):
        # shape: (34 * 1768, 3)
        predictions = output_layer(output, num_labels)
        predictions = tf.reshape(predictions, shape=[-1, 100, 3])
    return predictions, initial_state, new_state, output

所以我们从代码中可以看出,第一个GRU的单元格大小是64,第二个GRU的单元格大小是32。batch size是34(但这对我来说现在不重要) .输入特征的大小为 200。我尝试通过以下方式计算关于可训练变量的损失梯度:

local_grads_and_vars = optimizer.compute_gradients(loss, tf.trainable_variables())
# only the gradients are taken to add them later with the back propagated gradients from previous batch.
local_grads = [grad for grad, var in local_grads_and_vars]

for v in local_grads:
    print("v", v)

打印出梯度后,我得到以下信息:

v Tensor("Optimizer/gradients/GRU_Layer1/rnn/while/gru_cell/MatMul/Enter_grad/b_acc_3:0", shape=(264, 128), dtype=float32)
v Tensor("Optimizer/gradients/GRU_Layer1/rnn/while/gru_cell/BiasAdd/Enter_grad/b_acc_3:0", shape=(128,), dtype=float32)
v Tensor("Optimizer/gradients/GRU_Layer1/rnn/while/gru_cell/MatMul_1/Enter_grad/b_acc_3:0", shape=(264, 64), dtype=float32)
v Tensor("Optimizer/gradients/GRU_Layer1/rnn/while/gru_cell/BiasAdd_1/Enter_grad/b_acc_3:0", shape=(64,), dtype=float32)
v Tensor("Optimizer/gradients/GRU_Layer2/rnn/while/gru_cell/MatMul/Enter_grad/b_acc_3:0", shape=(96, 64), dtype=float32)
v Tensor("Optimizer/gradients/GRU_Layer2/rnn/while/gru_cell/BiasAdd/Enter_grad/b_acc_3:0", shape=(64,), dtype=float32)
v Tensor("Optimizer/gradients/GRU_Layer2/rnn/while/gru_cell/MatMul_1/Enter_grad/b_acc_3:0", shape=(96, 32), dtype=float32)
v Tensor("Optimizer/gradients/GRU_Layer2/rnn/while/gru_cell/BiasAdd_1/Enter_grad/b_acc_3:0", shape=(32,), dtype=float32)
v Tensor("Optimizer/gradients/output_layer/MatMul_grad/tuple/control_dependency_1:0", shape=(32, 3), dtype=float32)
v Tensor("Optimizer/gradients/output_layer/add_grad/tuple/control_dependency_1:0", shape=(3,), dtype=float32)

假设我在第一批训练模型后保存梯度,即在输入形状张量后:(34, 100, 200) as input_features "In the model function argument",输出为shape (34 * 100, 3),如何在第二个 mini-batch 上反向传播这些梯度?

来自 tf.gradients

的文档

grad_ys is a list of tensors of the same length as ys that holds the initial gradients for each y in ys. When grad_ys is None, we fill in a tensor of '1's of the shape of y for each y in ys. A user can provide their own initial grad_ys to compute the derivatives using a different initial gradient for each y (e.g., if one wanted to weight the gradient differently for each value in each y).

因此您的 grad_ys 应该是一个与输入 ys 长度相同的列表。

复制您的代码后,我可以将以下内容发送至 运行:

prev_grad_pl = [tf.placeholder(tf.float32, [batch, i]) for i in [64, 32]]
prev_grad_init = {l: np.ones(l.get_shape().as_list()) for l in prev_grad_pl}
prev_grads_val__ = tf.gradients([new_state1, new_state2], [initial_state1, initial_state2], grad_ys=prev_grad_pl)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())

    feed = {initial_state1: np.zeros([batch, gru1_cell_size]),
            initial_state2: np.zeros([batch, gru2_cell_size])}

    for k in prev_grad_init:
        feed[k] = prev_grad_init[k]

    grad1, grad2 = sess.run(prev_grads_val__, feed_dict=feed)

这是使用自定义代码的解决方案:

import tensorflow as tf
import numpy as np

cell_size = 32

seq_length = 1000

time_steps1 = 500
time_steps2 = seq_length - time_steps1

x_t = np.arange(1, seq_length + 1)    
x_t_plus_1 = np.arange(2, seq_length + 2)

tf.set_random_seed(123)

m_dtype = tf.float32

input_1 = tf.placeholder(dtype=m_dtype, shape=[None, time_steps1, 1], name="input_1")
input_2 = tf.placeholder(dtype=m_dtype, shape=[None, time_steps2, 1], name="input_2")

labels1 = tf.placeholder(dtype=m_dtype, shape=[None, time_steps1, 1], name="labels_1")
labels2 = tf.placeholder(dtype=m_dtype, shape=[None, time_steps2, 1], name="labels_2")

labels = tf.concat([labels1, labels2], axis=1, name="labels")

def model(input_feat1, input_feat2):
    with tf.variable_scope("GRU"):
        cell1 = tf.nn.rnn_cell.GRUCell(cell_size)
        cell2 = tf.nn.rnn_cell.GRUCell(cell_size)

        initial_state = tf.placeholder(shape=[None, cell_size], dtype=m_dtype, name="initial_state")

        with tf.variable_scope("First50"):
            # output1: shape=[1, time_steps1, 32]
            output1, new_state1 = tf.nn.dynamic_rnn(cell1, input_feat1, dtype=m_dtype, initial_state=initial_state)

        with tf.variable_scope("Second50"):
            # output2: shape=[1, time_steps2, 32]
            output2, new_state2 = tf.nn.dynamic_rnn(cell2, input_feat2, dtype=m_dtype, initial_state=new_state1)

        with tf.variable_scope("output"):
            # output shape: [1, time_steps1 + time_steps2, 32] => [1, 100, 32]
            output = tf.concat([output1, output2], axis=1)

            output = tf.reshape(output, shape=[-1, cell_size])
            output = tf.layers.dense(output, units=1)
            output = tf.reshape(output, shape=[1, time_steps1 + time_steps2, 1])

        with tf.variable_scope("outputs_1_2_reshaped"):
            output1 = tf.slice(input_=output, begin=[0, 0, 0], size=[-1, time_steps1, -1])
            output2 = tf.slice(input_=output, begin=[0, time_steps1, 0], size=[-1, time_steps2, 1])

            print(output.get_shape().as_list(), "1")
            print(output1.get_shape().as_list(), "2")
            print(output2.get_shape().as_list(), "3")

            return output, output1, output2, initial_state, new_state1, new_state2

def loss(output, output1, output2, labels, labels1, labels2):
    loss = tf.reduce_sum(tf.sqrt(tf.square(output - labels)))
    loss1 = tf.reduce_sum(tf.sqrt(tf.square(output1 - labels1)))
    loss2 = tf.reduce_sum(tf.sqrt(tf.square(output2 - labels2)))
    return loss, loss1, loss2

def optimize(loss, loss1, loss2, initial_state, new_state1, new_state2):
     with tf.name_scope('Optimizer'):
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)

        with tf.control_dependencies(update_ops):
            optimizer = tf.train.AdamOptimizer(learning_rate=0.001)

            grads1 = tf.gradients(loss2, new_state1)
            grads2 = tf.gradients(loss1, initial_state)
            grads3 = tf.gradients(new_state1, initial_state, grad_ys=grads1)

            grads_wrt_initial_state_1 = tf.add(grads2, grads3)
            grads_wrt_initial_state_2 = tf.gradients(loss, initial_state, grad_ys=None)

            return grads_wrt_initial_state_1, grads_wrt_initial_state_2

output, output1, output2, initial_state, new_state1, new_state2 = model(input_1, input_2)

loss, loss1, loss2 = loss(output, output1, output2, labels, labels1, labels2)

grads_wrt_initial_state_1, grads_wrt_initial_state_2 = optimize(loss, loss1, loss2, initial_state, new_state1, new_state2)

init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)

    in1 = np.reshape(x_t[:time_steps1], newshape=(1, time_steps1, 1))
    in2 = np.reshape(x_t[time_steps1:], newshape=(1, time_steps2, 1))
    l1 = np.reshape(x_t_plus_1[:time_steps1], newshape=(1, time_steps1, 1))
    l2 = np.reshape(x_t_plus_1[time_steps1:], newshape=(1, time_steps2, 1))
    i_s = np.zeros([1, cell_size])

    t1, t2 = sess.run([grads_wrt_initial_state_1, grads_wrt_initial_state_2], feed_dict={input_1: in1,
                                                                                         input_2: in2,
                                                                                         labels1: l1,
                                                                                         labels2: l2,
                                                                                         initial_state: i_s})
    print(np.mean(t1), np.mean(t2))
    print(np.sum(t1), np.sum(t2))

这是2个GRU一个接一个的例子,我按照optimize()

中的代码做了2种不同的反向传播