Dataframe 对于超级计算机来说太大了

Dataframe is too big for supercomputer

我正在尝试创建一个捐赠者和接受者矩阵,填充每对夫妇产生的捐赠总和以保持最终的 NA。

它适用于小型数据集(见下面的玩具示例)但是当我切换到国家数据集(3m 条目)时出现了几个问题:除了非常缓慢之外,填充 df 的创建消耗了( super)computer 我收到错误 "Error: cannot allocate vector of size 1529.0 Gb"

我该如何解决这个问题? 非常感谢!

library(dplyr)
library(tidyr)
libray(bigmemory)

candidate_id <- c("cand_1","cand_1","cand_1","cand_2","cand_3")
donor_id <- c("don_1","don_1","don_2","don_2","don_3")
donation <- c(1,2,3.5,4,10)
df = data.frame(candidate_id,donor_id,donation)
colnames(df) <- c("candidate_id","donor_id","donation")

fill <- df %>% 
  group_by(df$candidate_id,df$donor_id) %>% 
  summarise(tot_donation=sum(as.numeric(donation))) %>%
  complete(df$candidate_id,df$donor_id)

fill <- unique(fill[ ,1:3])
colnames(fill) <- c("candidate_id","donor_id","tot_donation")

nrow = length(unique(df$candidate_id))
ncol = length(unique(df$donor_id))
row_names = unique(fill$candidate_id)
col_names = unique(fill$donor_id)

x <- big.matrix(nrow, ncol, init=NA,dimnames=list(row_names,col_names))

for (i in 1:nrow){
  for (j in 1:ncol){

    x[i,j] <- fill[which(fill$candidate_id == row_names[i] & 
                       fill$donor_id == col_names[j]), 3]
  }
}

你可以试试

library(reshape2)

dcast(fill, candidate_id ~ donor_id, 
          value.var = "tot_donation", 
          fun.aggregate = sum)

我不知道它是否会避免内存问题,但它可能比双 for 循环快得多。

我必须 运行 开会,但我的一部分想知道是否有办法用 outer 来做到这一点。

我看到你正在使用 unique 因为你的输出有重复的值。 基于 , 您应该尝试以下操作以避免重复:

fill <- df %>% 
    group_by(candidate_id, donor_id) %>% 
    summarise(tot_donation=sum(donation)) %>%
    ungroup %>%
    complete(candidate_id, donor_id)

然后您可以尝试创建您想要的输出吗? 我认为 unique 可能会占用大量资源, 所以尽量避免调用它。 本杰明建议的 tidyr 版本应该是:

spread(fill, donor_id, tot_donation)

编辑:顺便说一句,因为你用 sparse-matrix 标记了问题, 您确实可以利用稀疏性来发挥自己的优势:

library(Matrix)
library(dplyr)

df <- data.frame(
  candidate_id = c("cand_1","cand_1","cand_1","cand_2","cand_3"),
  donor_id = c("don_1","don_1","don_2","don_2","don_3"),
  donation = c(1,2,3.5,4,10)
)

summ <- df %>% 
    group_by(candidate_id, donor_id) %>% 
    summarise(tot_donation=sum(donation)) %>%
    ungroup

num_candidates <- nlevels(df$candidate_id)
num_donors <- nlevels(df$donor_id)
smat <- Matrix(0, num_candidates, num_donors, sparse = TRUE, dimnames = list(
  levels(df$candidate_id),
  levels(df$donor_id)
))

indices <- summ %>%
  select(candidate_id, donor_id) %>%
  mutate_all(unclass) %>%
  as.matrix

smat[indices] <- summ$tot_donation
smat

3 x 3 sparse Matrix of class "dgCMatrix"
       don_1 don_2 don_3
cand_1     3   3.5     .
cand_2     .   4.0     .
cand_3     .   .      10