mgcv_1.8-24:bam() 的 "fREML" 或 "REML" 方法给出了错误解释的偏差

mgcv_1.8-24: "fREML" or "REML" method of bam() gives wrong explained deviance

使用方法 "fREML" 和 "REML" 用 bam 拟合同一个模型给了我接近的结果,但是解释的偏差与 summary.gam 返回的有很大不同。

"fREML" 的数量约为 3.5%(不好),而 "REML" 的数量约为 50%(还不错)。怎么可能?哪一个是正确的?

很遗憾,我无法提供一个简单的可重现示例。

#######################################
## method = "fREML", discrete = TRUE ##
#######################################

Family: binomial 
Link function: logit 
Formula:
ObsOrRand ~ s(Var1, k = 3) + s(RandomVar, bs = "re")  
Parametric coefficients:
            Estimate Std. Error z value Pr(>|z|) 
(Intercept)  -5.0026     0.2199  -22.75   <2e-16  
Approximate significance of smooth terms:
                  edf Ref.df Chi.sq  p-value 
s(Var1)          1.00  1.001  17.54 2.82e-05 
s(RandomVar)     16.39 19.000 145.03  < 2e-16  
R-sq.(adj) =  0.00349   Deviance explained = 3.57%
fREML = 2.8927e+05  Scale est. = 1         n = 312515

########################################
## method = "fREML", discrete = FALSE ##
########################################

Family: binomial 
Link function: logit 
Formula:
ObsOrRand ~ s(Var1, k = 3) + s(RandomVar, bs = "re")  
Parametric coefficients:
            Estimate Std. Error z value Pr(>|z|) 
(Intercept)  -4.8941     0.2207  -22.18   <2e-16  
Approximate significance of smooth terms:
                  edf Ref.df Chi.sq  p-value 
s(Var1)          1.008  1.016  17.44 3.09e-05 
s(RandomVar)     16.390 19.000 144.86  < 2e-16  
R-sq.(adj) =  0.00349   Deviance explained = 3.57%
fREML = 3.1556e+05  Scale est. = 1         n = 312515

#####################################################
## method = "REML", discrete method not applicable ##
#####################################################

Family: binomial 
Link function: logit 
Formula:
ObsOrRand ~ s(Var1, k = 3) + s(RandomVar, bs = "re")  
Parametric coefficients:
            Estimate Std. Error z value Pr(>|z|) 
(Intercept)  -4.8928     0.2205  -22.19   <2e-16  
Approximate significance of smooth terms:
                  edf Ref.df Chi.sq  p-value 
s(Var1)          1.156  1.278  16.57 8.53e-05 
s(RandomVar)     16.379 19.000 142.60  < 2e-16  
R-sq.(adj) =  0.0035   Deviance explained = 50.8%
-REML = 3.1555e+05  Scale est. = 1         n = 312515

这个问题可以追溯到 mgcv_1.8-23。它的 changlog 阅读:

* bam extended family extension had introduced a bug in null deviance 
  computation for Gaussian additive case when using methods other than fREML 
  or GCV.Cp. Fixed.

现在发现补丁对高斯情况是成功的,但对非高斯情况却不是。


让我先提供一个可重现的例子,因为你的问题没有。

set.seed(0)
x <- runif(1000)
## the linear predictor is a 3rd degree polynomial
p <- binomial()$linkinv(0.5 + poly(x, 3) %*% rnorm(3) * 20)
## p is well spread out on (0, 1); check `hist(p)`
y <- rbinom(1000, 1, p)

library(mgcv)
#Loading required package: nlme
#This is mgcv 1.8-24. For overview type 'help("mgcv-package")'.

fREML <- bam(y ~ s(x, bs = 'cr', k = 8), family = binomial(), method = "fREML")
REML <- bam(y ~ s(x, bs = 'cr', k = 8), family = binomial(), method = "REML")
GCV <- bam(y ~ s(x, bs = 'cr', k = 8), family = binomial(), method = "GCV.Cp")

## explained.deviance = (null.deviance - deviance) / null.deviance
## so in this example we get negative explained deviance for "REML" method

unlist(REML[c("null.deviance", "deviance")])
#null.deviance      deviance 
#     181.7107     1107.5241 

unlist(fREML[c("null.deviance", "deviance")])
#null.deviance      deviance 
#     1357.936      1107.524 

unlist(GCV[c("null.deviance", "deviance")])
#null.deviance      deviance 
#     1357.936      1108.108 

Null deviance 不能小于 deviance(TSS 不能小于 RSS),所以 bam 的 "REML" 方法在这里无法 return 正确的 Null deviance。

我已经在 mgcv_1.8-24/R/bam.r 的第 1350 行找到了问题:

object$family <- object$fitted.values <- NULL

其实应该是

object$null.deviance <- object$fitted.values <- NULL

对于 "GCV.Cp" 和 "fREML" 以外的方法,bam 依赖于 gam 进行估计,在将大型 n x p 模型矩阵缩减为 p x p矩阵(n:数据个数;p:系数个数)。由于这个新模型矩阵没有自然解释,许多 return 由 gam 编辑的量应该无效(除了估计的平滑参数)。 Simon 把 family.

打错了

我构建了一个补丁版本,结果修复了这个错误。我会告诉西蒙在下一个版本中修复它。