通过将一个数据框的列与另一个数据框的行相乘来获取一个数据框

Getting one dataframe by mutiliplying columns of one dataframe with rows of another dataframe

我有两个数据框,形状分别为 m*5 和 5*n。具有 5 列的第一个数据框的列名与具有 5 行的第二个数据框的索引相同。我想将第一个数据帧中每一行的每个元素与第二个数据帧的第一个 2 列相乘,并在第二个数据帧中具有相应的行索引。请在下面找到数据框以供参考:

数据帧 1:

                       %age_paid_0.0  %age_paid_0.1  %age_paid_0.2  %age_paid_0.3  \
account_angaza_id                                                               
AC005839                0.299221       0.377086       0.454950       0.532814   
AC005842                0.299221       0.299221       0.521691       0.521691   
AC005843                0.299221       0.377086       0.454950       0.532814   
AC005851                0.243604       0.310345       0.354839       0.354839   
AC005852                0.299221       0.377086       0.454950       0.532814   
AC005853                0.299221       0.377086       0.454950       0.532814   
AC005856                0.299221       0.377086       0.454950       0.532814   
AC005858                0.299221       0.377086       0.454950       0.532814   
AC005859                0.332592       0.432703       0.543938       0.650723   
AC005860                0.288098       0.365962       0.421580       0.532814   

                   %age_paid_0.4  %age_paid_0.5  
account_angaza_id                                
AC005839                0.610679       0.688543  
AC005842                0.521691       0.521691  
AC005843                0.610679       0.766407  
AC005851                0.510567       0.555061  
AC005852                0.610679       0.766407  
AC005853                0.610679       0.688543  
AC005856                0.610679       0.766407  
AC005858                0.543938       0.588432  
AC005859                0.650723       0.739711  
AC005860                0.532814       0.632925  

数据框 2:

                      0         1
%age_paid_0.0  0.369886  0.673442
%age_paid_0.1  0.409603  0.374386
%age_paid_0.2  0.425269  0.058336
%age_paid_0.3  0.425229 -0.191075
%age_paid_0.4  0.415484 -0.369895
%age_paid_0.5  0.401384 -0.479141

预期数据帧:

                   0         1
  AC005839     1.xxxxxx  2.xxxxxx
  AC005840     xxxxxxxx  xxxxxxxx
  AC005840     xxxxxxxx  xxxxxxxx

公式为

dataframe3.loc['AC005839',0] = dataframe1.loc['AC005839',%age_paid_0.1]*dataframe2.loc[%age_paid_0.1,0]+dataframe1.loc['AC005839',%age_paid_0.2]*dataframe2.loc[%age_paid_0.2,0]+...+dataframe1.loc['AC005839',%age_paid_0.5]*dataframe2.loc[%age_paid_0.5,0]
dataframe3.loc['AC005839',1] = dataframe1.loc['AC005839',%age_paid_0.1]*dataframe2.loc[%age_paid_0.1,1]+dataframe1.loc['AC005839',%age_paid_0.2]*dataframe2.loc[%age_paid_0.2,1]+...+dataframe1.loc['AC005839',%age_paid_0.5]*dataframe2.loc[%age_paid_0.5,1]

我们将不胜感激任何形式的帮助。基本上我试图将变量转换为与主要组件相同的平面。提前致谢!

这是点积。由于您的 index/column 标签匹配,您只需要:

df1.dot(df2)