Python:点积形状没有对齐?

Python: dot product shapes not aligned?

我有两个要用来生成点积的数据框。我认为这很简单。但我不断收到错误消息。 这是我的数据的样子(数据简化) 数据 1:

0   4   6
-0.276  4403    4403
-0.138  4640    4640
0   0   0
0.138   12  0
0.276   0   0
0.414   0   0
0.552   0   0
0.69    0   0
0.828   0   12
0.966   0   0
1.104   0   12
1.242   0   0
1.38    0   0
1.518   0   0
1.656   0   0
1.794   0   0
1.932   0   0
2.07    0   0
2.208   0   0
2.346   0   0
2.484   0   0
2.622   0   12
2.76    0   0
2.898   0   0
3.036   0   0
3.174   0   0
3.312   0   0
3.45    0   0
3.588   0   0
3.726   0   0
3.864   12  0
4.002   0   0
4.14    0   0
4.278   12  0
4.416   0   0
4.554   0   12
4.692   0   0
4.83    0   0
4.968   0   0
5.106   0   0
5.244   0   0
5.382   12  0
5.52    0   0
5.658   0   0
5.796   127 60
5.934   357 275
6.072   1882    2144
6.21    6726    6609
6.348   9398    11180
6.486   12784   18389
6.624   15863   20111
6.762   6739    10202
6.9 1684    1921
7.038   249 376
7.176   47  103
7.314   0   26
7.452   17  0
7.59    0   0
7.728   0   0
7.866   0   0
8.004   0   0
8.142   0   0
8.28    0   0
8.418   0   0
8.556   0   0
8.694   0   0
8.832   0   0
8.97    0   0
9.108   0   0
9.246   0   0
9.384   0   0
9.522   0   0
9.66    0   0
9.798   0   0
9.936   0   0
10.074  0   0
10.212  0   0
10.35   0   12
10.488  0   0
10.626  0   0
10.764  0   0
10.902  0   0
11.04   0   0
11.178  0   0
11.316  0   0
11.454  0   0
11.592  0   0
11.73   0   0
11.868  0   0
12.006  0   0
12.144  0   0
12.282  0   0
12.42   0   0
12.558  0   0
12.696  12  0
12.834  0   0
12.972  0   0
13.11   0   0
13.248  0   0
13.386  12  0
13.524  0   0
13.662  0   12
13.8    0   0
13.938  0   0
14.076  0   0
14.214  0   0
14.352  0   0
14.49   0   0
14.628  12  0
14.766  0   0
14.904  12  0
15.042  0   0
15.18   0   0
15.318  0   0
15.456  0   0
15.594  0   0
15.732  0   0
15.87   0   0
16.008  0   0
16.146  0   0
16.284  0   0
16.422  0   0
16.56   12  0
16.698  0   0
16.836  0   0
16.974  0   0
17.112  0   0
17.25   0   0
17.388  0   0
17.526  0   0
17.664  0   12
17.802  0   0
17.94   0   0
18.078  0   0
18.216  0   0
18.354  0   0
18.492  0   0
18.63   12  0
18.768  0   0
18.906  0   0
19.044  0   0
19.182  0   0
19.32   0   0
19.458  0   0
19.596  0   0
19.734  0   0
19.872  0   0
20.01   0   0
20.148  0   12
20.286  12  0
20.424  0   12
20.562  0   0
20.7    0   0
20.838  0   0
20.976  0   0
21.114  0   0
21.252  0   0
21.39   0   12
21.528  0   0
21.666  0   0
21.804  12  0
21.942  0   0
22.08   0   0
22.218  0   0
22.356  0   0
22.494  0   0
22.632  0   0
22.77   0   0
22.908  0   0
23.046  0   0
23.184  0   0
23.322  0   0
23.46   12  0
23.598  0   12
23.736  0   0
23.874  0   0
24.012  0   0
24.15   0   0
24.288  0   0
24.426  0   0
24.564  0   0
24.702  0   0
24.84   0   0
24.978  0   0
25.116  0   0
25.254  0   0
25.392  0   0
25.53   0   0
25.668  0   0
25.806  12  0
25.944  12  0
26.082  0   0
26.22   0   0
26.358  0   12
26.496  0   0
26.634  0   0
26.772  0   0
26.91   0   0
27.048  13  0
27.186  0   0
27.324  0   0
27.462  0   0

数据 2:

0   4   6
-0.276  4400    4400
-0.138  4750    4750
0   0   0
0.138   12  0
0.276   0   0
0.414   0   12
0.552   0   0
0.69    0   25
0.828   0   0
0.966   12  13
1.104   0   0
1.242   0   12
1.38    0   0
1.518   12  0
1.656   0   0
1.794   0   12
1.932   0   0
2.07    12  0
2.208   0   0
2.346   0   0
2.484   12  0
2.622   0   0
2.76    24  0
2.898   0   0
3.036   0   0
3.174   12  0
3.312   0   0
3.45    0   0
3.588   0   12
3.726   39  0
3.864   0   12
4.002   0   0
4.14    0   12
4.278   0   0
4.416   0   0
4.554   0   0
4.692   0   0
4.83    0   0
4.968   0   0
5.106   0   0
5.244   0   0
5.382   0   0
5.52    0   12
5.658   0   0
5.796   0   0
5.934   0   0
6.072   43  46
6.21    6711    11323
6.348   91043   116679
6.486   241572  307822
6.624   250588  309749
6.762   105123  139651
6.9 16143   21264
7.038   2521    3648
7.176   1042    1022
7.314   576 910
7.452   482 552
7.59    229 416
7.728   210 227
7.866   120 149
8.004   69  55
8.142   47  0
8.28    26  65
8.418   0   20
8.556   0   0
8.694   0   0
8.832   0   12
8.97    12  38
9.108   0   0
9.246   18  0
9.384   0   0
9.522   0   13
9.66    0   0
9.798   0   18
9.936   16  0
10.074  12  0
10.212  0   0
10.35   12  0
10.488  0   0
10.626  0   23
10.764  0   0
10.902  0   0
11.04   20  0
11.178  0   0
11.316  0   0
11.454  0   0
11.592  0   0
11.73   0   12
11.868  14  12
12.006  0   0
12.144  0   0
12.282  0   0
12.42   0   0
12.558  0   12
12.696  0   0
12.834  0   0
12.972  12  0
13.11   0   0
13.248  0   0
13.386  0   18
13.524  0   0
13.662  12  0
13.8    12  0
13.938  13  0
14.076  0   0
14.214  0   0
14.352  0   0
14.49   0   0
14.628  24  0
14.766  0   15
14.904  0   16
15.042  0   12
15.18   12  0
15.318  0   12
15.456  0   0
15.594  0   0
15.732  14  13
15.87   0   23
16.008  0   0
16.146  0   0
16.284  0   16
16.422  0   12
16.56   0   0
16.698  0   0
16.836  0   0
16.974  0   13
17.112  0   0
17.25   0   0
17.388  16  0
17.526  0   12
17.664  0   0
17.802  0   0
17.94   0   12
18.078  0   0
18.216  0   0
18.354  0   19
18.492  0   0
18.63   0   0
18.768  0   12
18.906  0   0
19.044  0   12
19.182  0   12
19.32   0   0
19.458  0   0
19.596  12  24
19.734  0   0
19.872  0   0
20.01   0   0
20.148  0   0
20.286  0   0
20.424  0   12
20.562  12  0
20.7    0   0
20.838  0   0
20.976  0   0
21.114  0   0
21.252  0   0
21.39   0   12
21.528  12  12
21.666  0   0
21.804  12  0
21.942  0   0
22.08   0   0
22.218  0   0
22.356  0   12
22.494  0   0
22.632  12  0
22.77   0   0
22.908  0   0
23.046  12  0
23.184  0   0
23.322  12  0
23.46   0   0
23.598  13  16
23.736  24  17
23.874  0   0
24.012  12  0
24.15   0   0
24.288  0   0
24.426  12  0
24.564  0   0
24.702  0   0
24.84   0   0
24.978  0   0
25.116  0   0
25.254  0   0
25.392  14  12
25.53   25  0
25.668  0   12
25.806  0   0
25.944  0   15
26.082  0   0
26.22   12  0
26.358  0   0
26.496  0   0
26.634  0   0
26.772  27  0
26.91   0   12
27.048  0   22
27.186  0   0
27.324  0   0
27.462  0   0

然后我有下面的代码

import pandas as pd
import numpy as np

first_y= np.array(firt_df.iloc[:,1:])
second_y= np.array(second_df.iloc[:,1:])

#dot product
dot_product_both=np.dot(first_y, second_y)

由于第二列和第三列是我要处理的值,因此我以这种方式读取了 first_y 和 second_y。 但是我收到如下错误消息。

shapes (200,42) and (200,42) not aligned: 42 (dim 1) != 200 (dim 0)

我认为我的数据集具有相同的形状。我不确定是什么导致了这个问题..

编辑:原始数据集有两列,但我添加了更多部分数据..

Since the second columns are the values that I want to process I read the first_y and second_y that way.

这不是真的,您已经阅读了 第二列之后的内容,如 firt_df.iloc[:, 1:] 中的第二个冒号所示。相反,只是 select 第二列。您还可以使用 pd.Series.values 而不是显式调用 np.array:

first_y = firt_df.iloc[:, 1].values
second_y = second_df.iloc[:, 1].values

dot_product = np.dot(first_y, second_y)

该约定对 Python 列表和 NumPy 数组是通用的。