没有下溢和上溢,是否有2个数,十进制形式A < B,转为浮点数后A > B?

Without underflow and overflow, is there any 2 numbers, which A < B in decimal form, but A > B after converting to floating point?

例如,0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000011要大于0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001,以及inteim in cesimal and cresimal in cesimal interting toceimal

document.writeln(0.00000000000000000000000000000000000000000000000000000000000000000000000000000011>0.0000000000000000000000000000000000000000000000000000000000000000000000000000001);

而1.9999999999999999999在十进制中小于2,但转为浮点数后相等:

document.writeln(1.9999999999999999999==2);

我的问题是,是否有A和B这2个数,十进制形式是A < B,但转为浮点数后变成A > B?

通常的舍入规则是弱单调的,所以没有。

IEEE 754 定义的舍入规则将结果舍入到最接近的可表示值,而不管它在哪个方向,或者舍入到所选方向(例如向零)中最接近的可表示值。两个数字的四舍五入不可能相互交叉(当使用相同规则四舍五入时),因为这意味着一个数字没有四舍五入到最接近的可表示值。