"gp" 更平滑的 GAM:在新位置进行预测

GAM with "gp" smoother: predict at new locations

我正在使用以下地理加性模型

library(gamair)
library(mgcv)

data(mack)    
mack$log.net.area <- log(mack$net.area)

gm2 <- gam(egg.count ~ s(lon,lat,bs="gp",k=100,m=c(2,10,1)) +
                       s(I(b.depth^.5)) +
                       s(c.dist) +
                       s(temp.20m) +
                       offset(log.net.area),
                       data = mack, family = tw, method = "REML")

我如何使用它来预测新位置 (lon/lat)egg.count 的值,我没有协变量数据,如 kriging?

例如,我想在这些新位置

预测egg.count
    lon lat
1  -3.00  44
4  -2.75  44
7  -2.50  44
10 -2.25  44
13 -2.00  44
16 -1.75  44

但这里我不知道协变量的值(b.depthc.disttemp.20mlog.net.area)。

predict 仍然要求模型中使用的所有变量都在 newdata 中显示,但您可以将一些任意值(例如 0s)传递给您不使用的那些协变量' 有,然后使用 type = "terms"terms = name_of_the_wanted_smooth_term 继续。使用

sapply(gm2$smooth, "[[", "label")
#[1] "s(lon,lat)"        "s(I(b.depth^0.5))" "s(c.dist)"        
#[4] "s(temp.20m)"

检查模型中有哪些平滑项。

## new spatial locations to predict
newdat <- read.table(text = "lon lat
                             1  -3.00  44
                             4  -2.75  44
                             7  -2.50  44
                             10 -2.25  44
                             13 -2.00  44
                             16 -1.75  44")

## "garbage" values, just to pass the variable names checking in `predict.gam`
newdat[c("b.depth", "c.dist", "temp.20m", "log.net.area")] <- 0

## prediction on the link scale
pred_link <- predict(gm2, newdata = newdat, type = "terms", terms = "s(lon,lat)")
#   s(lon,lat)
#1  -1.9881967
#4  -1.9137971
#7  -1.6365945
#10 -1.1247837
#13 -0.7910023
#16 -0.7234683
#attr(,"constant")
#(Intercept) 
#   2.553535 

## simplify to vector
pred_link <- attr(pred_link, "constant") + rowSums(pred_link)
#[1] 0.5653381 0.6397377 0.9169403 1.4287511 1.7625325 1.8300665

## prediction on the response scale
pred_response <- gm2$family$linkinv(pred_link)
#[1] 1.760043 1.895983 2.501625 4.173484 5.827176 6.234301

如果我想对特定的平滑项进行预测,我通常不会使用predict.gampredict.gam的逻辑是先对所有term做预测,也就是和你做的type = "terms"一样。然后

  • 如果 type = "link",对所有逐项预测加上截距(可能 offset)进行 rowSums
  • 如果type = "terms""terms""exclude"未指定,return结果原样;
  • 如果 type = "terms" 并且您指定了 "terms" 和/或 "exclude",一些 post-process 会删除您不想要的条款,只提供你想要的人。

因此,predict.gam 将始终对所有项进行计算,即使您只需要一个项。

知道这背后的低效率,这就是我要做的:

sm <- gm2$smooth[[1]]  ## extract smooth construction info for `s(lon,lat)`
Xp <- PredictMat(sm, newdat)  ## predictor matrix
b <- gm2$coefficients[with(sm, first.para:last.para)]  ## coefficients for this term
pred_link <- c(Xp %*% b) + gm2$coef[[1]]  ## this term + intercept
#[1] 0.5653381 0.6397377 0.9169403 1.4287511 1.7625325 1.8300665
pred_response <- gm2$family$linkinv(pred_link)
#[1] 1.760043 1.895983 2.501625 4.173484 5.827176 6.234301

你看,我们得到了相同的结果。


Won't the result depend the way on the value assigned to the covariates (here 0)?

将根据这些垃圾值进行一些垃圾预测,但 predict.gam 最终会丢弃它们。

Thanks, you are right. I am not totally sure to understand why then there is the option to add the covariates values at new locations.

我觉得代码维护对于像mgcv这样的大包来说是非常困难的。如果您希望它适合每个用户的需要,则需要对代码进行重大更改。显然,当像您这样的人只希望它预测某个平滑时,我在这里描述的 predict.gam 逻辑将是低效的。理论上如果是这种情况,检查 newdata 中的变量名可以忽略用户不需要的那些术语。但是,这需要对 predict.gam 进行重大更改,并且可能会因代码更改而引入许多错误。此外,您必须向 CRAN 提交更改日志,而 CRAN 可能不会高兴看到这种剧烈的变化。

西蒙曾分享过他的感受:很多人告诉我,我应该把mgcv写成这样或那样,但我就是做不到。是的,对像他这样的包作者/维护者表示同情。


Thanks for the update answer. However, I don't understand why the predictions don't depend on the values of the covariates at the new locations.

这取决于您是否为 b.depthc.disttemp.20mlog.net.area 提供协变量值。但是由于您没有在新位置使用它们,因此预测只是假设这些影响是 0.

OK thanks I see now! So would it be correct to say that in the absence of covariate values at new locations I am only predicting the response from the spatial autocorrelation of the residuals?

你只是在预测空间场/平滑。在 GAM 方法中,空间场被建模为均值的一部分,而不是方差-协方差(如克里金法),因此我认为您在这里使用 "residuals" 是不正确的。

Yes, you are right. Just to understand what this code does: would it be correct to say that I am predicting how the response changes over space but not its actual values at the new locations (since for that I would need the values of the covariates at these locations)?

正确。您可以尝试使用 predict.gam 或不使用 terms = "s(lon,lat)" 来帮助您消化输出。当您改变传递给其他协变量的垃圾值时,看看它是如何变化的。

## a possible set of garbage values for covariates
newdat[c("b.depth", "c.dist", "temp.20m", "log.net.area")] <- 0

predict(gm2, newdat, type = "terms")
#   s(lon,lat) s(I(b.depth^0.5)) s(c.dist) s(temp.20m)
#1  -1.9881967          -1.05514 0.4739174   -1.466549
#4  -1.9137971          -1.05514 0.4739174   -1.466549
#7  -1.6365945          -1.05514 0.4739174   -1.466549
#10 -1.1247837          -1.05514 0.4739174   -1.466549
#13 -0.7910023          -1.05514 0.4739174   -1.466549
#16 -0.7234683          -1.05514 0.4739174   -1.466549
#attr(,"constant")
#(Intercept) 
#   2.553535 

predict(gm2, newdat, type = "terms", terms = "s(lon,lat)")
#   s(lon,lat)
#1  -1.9881967
#4  -1.9137971
#7  -1.6365945
#10 -1.1247837
#13 -0.7910023
#16 -0.7234683
#attr(,"constant")
#(Intercept) 
#   2.553535 

## another possible set of garbage values for covariates
newdat[c("b.depth", "c.dist", "temp.20m", "log.net.area")] <- 1
#   s(lon,lat) s(I(b.depth^0.5))  s(c.dist) s(temp.20m)
#1  -1.9881967        -0.9858522 -0.3749018   -1.269878
#4  -1.9137971        -0.9858522 -0.3749018   -1.269878
#7  -1.6365945        -0.9858522 -0.3749018   -1.269878
#10 -1.1247837        -0.9858522 -0.3749018   -1.269878
#13 -0.7910023        -0.9858522 -0.3749018   -1.269878
#16 -0.7234683        -0.9858522 -0.3749018   -1.269878
#attr(,"constant")
#(Intercept) 
#   2.553535 

predict(gm2, newdat, type = "terms", terms = "s(lon,lat)")
#   s(lon,lat)
#1  -1.9881967
#4  -1.9137971
#7  -1.6365945
#10 -1.1247837
#13 -0.7910023
#16 -0.7234683
#attr(,"constant")
#(Intercept) 
#   2.553535