mlr:使用验证集调整模型参数

mlr: Tune model parameters with validation set

我的机器学习工作流程刚刚切换到 mlr。我想知道是否可以使用单独的验证集来调整超参数。根据我的最低理解,makeResampleDescmakeResampleInstance 只接受训练数据的重采样。

我的目标是使用验证集调整参数并使用测试集测试最终模型。这是为了防止过度拟合和知识泄漏。

这是我在代码方面所做的:

## Create training, validation and test tasks
train_task <- makeClassifTask(data = train_data, target = "y", positive = 1)
validation_task <- makeClassifTask(data = validation_data, target = "y")
test_task <- makeClassifTask(data = test_data, target = "y")

## Attempt to tune parameters with separate validation data
tuned_params <- tuneParams(
    task = train_task,
    resampling = makeResampleInstance("Holdout", task = validation_task),
    ...
)

从错误消息来看,评估似乎仍在尝试从训练集中重新采样:

00001: Error in resample.fun(learner2, task, resampling, measures = measures, : Size of data set: 19454 and resampling instance: 1666333 differ!

有人知道我该怎么做吗?我是否以正确的方式设置了所有内容?

[更新于 2019/03/27]

根据@jakob-r 的评论,终于理解了@LarsKotthoff 的建议,这是我所做的:

## Create combined training data
train_task_data <- rbind(train_data, validation_data)

## Create learner, training task, etc.
xgb_learner <- makeLearner("classif.xgboost", predict.type = "prob")
train_task <- makeClassifTask(data = train_task_data, target = "y", positive = 1)

## Tune hyperparameters
tune_wrapper <- makeTuneWrapper(
  learner = xgb_learner,
  resampling = makeResampleDesc("Holdout"),
  measures = ...,
  par.set = ...,
  control = ...
)
model_xgb <- train(tune_wrapper, train_task)

这是我根据@LarsKotthoff 的评论所做的。假设您有两个单独的数据集用于训练 (train_data) 和验证 (validation_data):

## Create combined training data
train_task_data <- rbind(train_data, validation_data)
size <- nrow(train_task_data)
train_ind <- seq_len(nrow(train_data))
validation_ind <- seq.int(max(train_ind) + 1, size)

## Create training task
train_task <- makeClassifTask(data = train_task_data, target = "y", positive = 1)

## Tune hyperparameters
tuned_params <- tuneParams(
    task = train_task,
    resampling = makeFixedHoldoutInstance(train_ind, validation_ind, size),
    ...
)

优化超参数集后,您可以构建最终模型并针对您的测试数据集进行测试。

注意:我必须安装来自GitHub的最新开发版本(截至2018/08/06)。当前 CRAN 版本 (2.12.1) 在我调用 makeFixedHoldoutInstance() 时抛出错误,即

Assertion on 'discrete.names' failed: Must be of type 'logical flag', not 'NULL'.