将数据分成 python 2.7 中的交替组

Splitting data into alternating groups in python 2.7

          day         city  temperature  windspeed   event

        2017-01-01  new york           32          6    Rain
        2017-01-02  new york           36          7   Sunny
        2017-01-03  new york           28         12    Snow
        2017-01-04  new york           33          7   Sunny
        2017-01-05  new york           31          7    Rain
        2017-01-06  new york           33          5   Sunny
        2017-01-07  new york           27         12    Rain
        2017-01-08  new york           23          7  Rain
        2017-01-01    mumbai           90          5   Sunny
        2017-01-02    mumbai           85         12     Fog
        2017-01-03    mumbai           87         15     Fog
        2017-01-04    mumbai           92          5    Rain
        2017-01-05    mumbai           89          7   Sunny
        2017-01-06    mumbai           80         10     Fog
        2017-01-07    mumbai           85         9     Sunny
        2017-01-08    mumbai           89          8    Rain
        2017-01-01     paris           45         20   Sunny
        2017-01-02     paris           50         13  Cloudy
        2017-01-03     paris           54          8  Cloudy
        2017-01-04     paris           42         10  Cloudy
        2017-01-05     paris           43         20   Sunny
        2017-01-06     paris           48         4  Cloudy
        2017-01-07     paris           40          14  Rain
        2017-01-08     paris           42         15  Cloudy
        2017-01-09     paris           53         8  Sunny

上面显示的是 .txt 文件。

我的目标是创建 4 个尽可能均匀分布的组,包含所有城市,这意味着每个组有 'new york'、'mumbai'、'paris'.

因为有25条数据,3组6行,1组7行。

我现在想到的是,由于数据已经按城市排序,我可以逐行读取文本文件,然后对于每一行,我将把它附加到 4 组(G1- G4) 交替模式。意思是说,第一行,它将附加到 G1,然后第二行附加到 G2,第三行附加到 G3,第四行附加到 G4,第五行附加回 G1,第六行附加到 G2,依此类推。这样可以保证所有组都拥有全部3个城市。

这样编码可行吗?

预期结果:

G1: Row/Line 1 个, 第 5 行, 第 9 行,

G2: 第 2 行, 第 6 行, 第 10 行,

G3: 第 3 行, 第 7 行, 第 11 行,

G4: 第 4 行, 第 8 行, 第 12 行,依此类推。

我只保留行索引以便于解释

rows = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]

然后就可以使用切片了

G1, G2, G3, G4 = [rows[i::4] for i in range(4)]

结果会是

G1 == [1, 5, 9, 13, 17, 21, 25]
G2 == [2, 6, 10, 14, 18, 22]
G3 == [3, 7, 11, 15, 19, 23]
G4 == [4, 8, 12, 16, 20, 24]]

由于您的输入已经排序,您可以将字符串拆分为一个列表,然后使用 4 的步骤对它们进行切片:

data = '''        2017-01-01  new york           32          6    Rain
        2017-01-02  new york           36          7   Sunny
        2017-01-03  new york           28         12    Snow
        2017-01-04  new york           33          7   Sunny
        2017-01-05  new york           31          7    Rain
        2017-01-06  new york           33          5   Sunny
        2017-01-07  new york           27         12    Rain
        2017-01-08  new york           23          7  Rain
        2017-01-01    mumbai           90          5   Sunny
        2017-01-02    mumbai           85         12     Fog
        2017-01-03    mumbai           87         15     Fog
        2017-01-04    mumbai           92          5    Rain
        2017-01-05    mumbai           89          7   Sunny
        2017-01-06    mumbai           80         10     Fog
        2017-01-07    mumbai           85         9     Sunny
        2017-01-08    mumbai           89          8    Rain
        2017-01-01     paris           45         20   Sunny
        2017-01-02     paris           50         13  Cloudy
        2017-01-03     paris           54          8  Cloudy
        2017-01-04     paris           42         10  Cloudy
        2017-01-05     paris           43         20   Sunny
        2017-01-06     paris           48         4  Cloudy
        2017-01-07     paris           40          14  Rain
        2017-01-08     paris           42         15  Cloudy
        2017-01-09     paris           53         8  Sunny'''
lines = data.splitlines()
groups = [lines[i::4] for i in range(4)]
for g in groups:
    print(g)

这输出:

['        2017-01-01  new york           32          6    Rain', '        2017-01-05  new york           31          7    Rain', '        2017-01-01    mumbai           90          5   Sunny', '        2017-01-05    mumbai           89          7   Sunny', '        2017-01-01     paris           45         20   Sunny', '        2017-01-05     paris           43         20   Sunny', '        2017-01-09     paris           53         8  Sunny']
['        2017-01-02  new york           36          7   Sunny', '        2017-01-06  new york           33          5   Sunny', '        2017-01-02    mumbai           85         12     Fog', '        2017-01-06    mumbai           80         10     Fog', '        2017-01-02     paris           50         13  Cloudy', '        2017-01-06     paris           48         4  Cloudy']
['        2017-01-03  new york           28         12    Snow', '        2017-01-07  new york           27         12    Rain', '        2017-01-03    mumbai           87         15     Fog', '        2017-01-07    mumbai           85         9     Sunny', '        2017-01-03     paris           54          8  Cloudy', '        2017-01-07     paris           40          14  Rain']
['        2017-01-04  new york           33          7   Sunny', '        2017-01-08  new york           23          7  Rain', '        2017-01-04    mumbai           92          5    Rain', '        2017-01-08    mumbai           89          8    Rain', '        2017-01-04     paris           42         10  Cloudy', '        2017-01-08     paris           42         15  Cloudy']

您可以使用 pandas 和一些数学运算来复制您的组。

n, r = df.shape[0] // 4, df.shape[0] % 4
df['group'] = [1,2,3,4]*n + [1,2,3,4][:r]


    day         city        temperature windspeed   event   group
0   2017-01-01  new york    32          6           Rain    1
1   2017-01-02  new york    36          7           Sunny   2
2   2017-01-03  new york    28          12          Snow    3
3   2017-01-04  new york    33          7           Sunny   4
4   2017-01-05  new york    31          7           Rain    1
5   2017-01-06  new york    33          5           Sunny   2
6   2017-01-07  new york    27          12          Rain    3
7   2017-01-08  new york    23          7           Rain    4
8   2017-01-01  mumbai      90          5           Sunny   1
9   2017-01-02  mumbai      85          12          Fog     2
10  2017-01-03  mumbai      87          15          Fog     3
11  2017-01-04  mumbai      92          5           Rain    4
12  2017-01-05  mumbai      89          7           Sunny   1
13  2017-01-06  mumbai      80          10          Fog     2
14  2017-01-07  mumbai      85          9           Sunny   3
15  2017-01-08  mumbai      89          8           Rain    4
16  2017-01-01  paris       45          20          Sunny   1
17  2017-01-02  paris       50          13          Cloudy  2
18  2017-01-03  paris       54          8           Cloudy  3
19  2017-01-04  paris       42          10          Cloudy  4
20  2017-01-05  paris       43          20          Sunny   1
21  2017-01-06  paris       48          4           Cloudy  2
22  2017-01-07  paris       40          14          Rain    3
23  2017-01-08  paris       42          15          Cloudy  4
24  2017-01-09  paris       53          8           Sunny   1