如何在 vtk 中可视化二维双精度数组?
How to visualize 2d array of doubles in vtk?
我有双打的二维数组(大小为 20x30):
double a[20*30];
如何用VTK可视化?找到合适的文档非常困难。我找到的最接近的例子是 this, however it uses as input 3 unsigned chars which represents color. As I understand I should use vtkScalarsToColors class 以某种方式将标量映射到颜色,但我无法弄清楚如何将所有内容放入一段代码中。
您可能想要做的是将标量分配给表面或体积网格的点或单元。然后 VTK 可以处理可视化。以下示例对此进行了演示:ScalarBarActor. For the basic usage, follow the Scalars 示例。
但是,您需要自己提供要将值映射到的合适网格。从您的问题来看,您对 "how to visualize a 2d array" 值的含义并不完全清楚。如果要在平面 20x30 网格中分配标量值,则需要首先创建一个具有三角形或四边形单元格的表面对象(类型 vtkPolyData
),然后使用 [=] 将值分配给网格的点12=],如上例所示。
在这种情况下方便的是 vtkPlaneSource
, look here for the corresponding example. The number of grid points you can set by using SetXResolution()
or SetYResolution()
respectively. (In case this is not clear: vtkPlaneSource
inherits vtkPolyDataAlgorithm
,要访问基础 vtkPolyData
对象,请使用方法 GetOutput()
)
更新:为了更好的可读性,我在 python 中添加了演示程序的示例代码。
# This code has been written by normanius under the CC BY-SA 4.0 license.
# License: https://creativecommons.org/licenses/by-sa/4.0/
# Author: normanius: https://whosebug.com/users/3388962/normanius
# Date: August 2018
# Reference:
import vtk
import numpy as np
###########################################################
# CREATE ARRAY VALUES
###########################################################
# Just create some fancy looking values for z.
n = 100
m = 50
xmin = -1; xmax = 1
ymin = -1; ymax = 1
x = np.linspace(xmin, xmax, n)
y = np.linspace(ymin, ymax, m)
x, y = np.meshgrid(x, y)
x, y = x.flatten(), y.flatten()
z = (x+y)*np.exp(-3.0*(x**2+y**2))
###########################################################
# CREATE PLANE
###########################################################
# Create a planar mesh of quadriliterals with nxm points.
# (SetOrigin and SetPointX only required if the extent
# of the plane should be the same. For the mapping
# of the scalar values, this is not required.)
plane = vtk.vtkPlaneSource()
plane.SetResolution(n-1,m-1)
plane.SetOrigin([xmin,ymin,0]) # Lower left corner
plane.SetPoint1([xmax,ymin,0])
plane.SetPoint2([xmin,ymax,0])
plane.Update()
# Map the values to the planar mesh.
# Assumption: same index i for scalars z[i] and mesh points
nPoints = plane.GetOutput().GetNumberOfPoints()
assert(nPoints == len(z))
# VTK has its own array format. Convert the input
# array (z) to a vtkFloatArray.
scalars = vtk.vtkFloatArray()
scalars.SetNumberOfValues(nPoints)
for i in range(nPoints):
scalars.SetValue(i, z[i])
# Assign the scalar array.
plane.GetOutput().GetPointData().SetScalars(scalars)
###########################################################
# WRITE DATA
###########################################################
writer = vtk.vtkXMLPolyDataWriter()
writer.SetFileName('output.vtp')
writer.SetInputConnection(plane.GetOutputPort())
writer.Write() # => Use for example ParaView to see scalars
###########################################################
# VISUALIZATION
###########################################################
# This is a bit annoying: ensure a proper color-lookup.
colorSeries = vtk.vtkColorSeries()
colorSeries.SetColorScheme(vtk.vtkColorSeries.BREWER_DIVERGING_SPECTRAL_10)
lut = vtk.vtkColorTransferFunction()
lut.SetColorSpaceToHSV()
nColors = colorSeries.GetNumberOfColors()
zMin = np.min(z)
zMax = np.max(z)
for i in range(0, nColors):
color = colorSeries.GetColor(i)
color = [c/255.0 for c in color]
t = zMin + float(zMax - zMin)/(nColors - 1) * i
lut.AddRGBPoint(t, color[0], color[1], color[2])
# Mapper.
mapper = vtk.vtkPolyDataMapper()
mapper.SetInputConnection(plane.GetOutputPort())
mapper.ScalarVisibilityOn()
mapper.SetScalarModeToUsePointData()
mapper.SetLookupTable(lut)
mapper.SetColorModeToMapScalars()
# Actor.
actor = vtk.vtkActor()
actor.SetMapper(mapper)
# Renderer.
renderer = vtk.vtkRenderer()
renderer.SetBackground([0.5]*3)
# Render window and interactor.
renderWindow = vtk.vtkRenderWindow()
renderWindow.SetWindowName('Demo')
renderWindow.AddRenderer(renderer)
renderer.AddActor(actor)
interactor = vtk.vtkRenderWindowInteractor()
interactor.SetRenderWindow(renderWindow)
renderWindow.Render()
interactor.Start()
结果类似于:
我有双打的二维数组(大小为 20x30):
double a[20*30];
如何用VTK可视化?找到合适的文档非常困难。我找到的最接近的例子是 this, however it uses as input 3 unsigned chars which represents color. As I understand I should use vtkScalarsToColors class 以某种方式将标量映射到颜色,但我无法弄清楚如何将所有内容放入一段代码中。
您可能想要做的是将标量分配给表面或体积网格的点或单元。然后 VTK 可以处理可视化。以下示例对此进行了演示:ScalarBarActor. For the basic usage, follow the Scalars 示例。
但是,您需要自己提供要将值映射到的合适网格。从您的问题来看,您对 "how to visualize a 2d array" 值的含义并不完全清楚。如果要在平面 20x30 网格中分配标量值,则需要首先创建一个具有三角形或四边形单元格的表面对象(类型 vtkPolyData
),然后使用 [=] 将值分配给网格的点12=],如上例所示。
在这种情况下方便的是 vtkPlaneSource
, look here for the corresponding example. The number of grid points you can set by using SetXResolution()
or SetYResolution()
respectively. (In case this is not clear: vtkPlaneSource
inherits vtkPolyDataAlgorithm
,要访问基础 vtkPolyData
对象,请使用方法 GetOutput()
)
更新:为了更好的可读性,我在 python 中添加了演示程序的示例代码。
# This code has been written by normanius under the CC BY-SA 4.0 license.
# License: https://creativecommons.org/licenses/by-sa/4.0/
# Author: normanius: https://whosebug.com/users/3388962/normanius
# Date: August 2018
# Reference:
import vtk
import numpy as np
###########################################################
# CREATE ARRAY VALUES
###########################################################
# Just create some fancy looking values for z.
n = 100
m = 50
xmin = -1; xmax = 1
ymin = -1; ymax = 1
x = np.linspace(xmin, xmax, n)
y = np.linspace(ymin, ymax, m)
x, y = np.meshgrid(x, y)
x, y = x.flatten(), y.flatten()
z = (x+y)*np.exp(-3.0*(x**2+y**2))
###########################################################
# CREATE PLANE
###########################################################
# Create a planar mesh of quadriliterals with nxm points.
# (SetOrigin and SetPointX only required if the extent
# of the plane should be the same. For the mapping
# of the scalar values, this is not required.)
plane = vtk.vtkPlaneSource()
plane.SetResolution(n-1,m-1)
plane.SetOrigin([xmin,ymin,0]) # Lower left corner
plane.SetPoint1([xmax,ymin,0])
plane.SetPoint2([xmin,ymax,0])
plane.Update()
# Map the values to the planar mesh.
# Assumption: same index i for scalars z[i] and mesh points
nPoints = plane.GetOutput().GetNumberOfPoints()
assert(nPoints == len(z))
# VTK has its own array format. Convert the input
# array (z) to a vtkFloatArray.
scalars = vtk.vtkFloatArray()
scalars.SetNumberOfValues(nPoints)
for i in range(nPoints):
scalars.SetValue(i, z[i])
# Assign the scalar array.
plane.GetOutput().GetPointData().SetScalars(scalars)
###########################################################
# WRITE DATA
###########################################################
writer = vtk.vtkXMLPolyDataWriter()
writer.SetFileName('output.vtp')
writer.SetInputConnection(plane.GetOutputPort())
writer.Write() # => Use for example ParaView to see scalars
###########################################################
# VISUALIZATION
###########################################################
# This is a bit annoying: ensure a proper color-lookup.
colorSeries = vtk.vtkColorSeries()
colorSeries.SetColorScheme(vtk.vtkColorSeries.BREWER_DIVERGING_SPECTRAL_10)
lut = vtk.vtkColorTransferFunction()
lut.SetColorSpaceToHSV()
nColors = colorSeries.GetNumberOfColors()
zMin = np.min(z)
zMax = np.max(z)
for i in range(0, nColors):
color = colorSeries.GetColor(i)
color = [c/255.0 for c in color]
t = zMin + float(zMax - zMin)/(nColors - 1) * i
lut.AddRGBPoint(t, color[0], color[1], color[2])
# Mapper.
mapper = vtk.vtkPolyDataMapper()
mapper.SetInputConnection(plane.GetOutputPort())
mapper.ScalarVisibilityOn()
mapper.SetScalarModeToUsePointData()
mapper.SetLookupTable(lut)
mapper.SetColorModeToMapScalars()
# Actor.
actor = vtk.vtkActor()
actor.SetMapper(mapper)
# Renderer.
renderer = vtk.vtkRenderer()
renderer.SetBackground([0.5]*3)
# Render window and interactor.
renderWindow = vtk.vtkRenderWindow()
renderWindow.SetWindowName('Demo')
renderWindow.AddRenderer(renderer)
renderer.AddActor(actor)
interactor = vtk.vtkRenderWindowInteractor()
interactor.SetRenderWindow(renderWindow)
renderWindow.Render()
interactor.Start()
结果类似于: