在 numba 中使用 numpy.vstack
Using numpy.vstack in numba
所以我一直在尝试优化一些代码,这些代码根据一些数组数据计算统计误差指标。该指标称为连续排名概率分数 (CRPS)。
我一直在使用 Numba 来尝试加速此计算中所需的双循环,但我一直遇到 numpy.vstack
函数的问题。据我从文档 here 中了解到,应该支持 vstack()
函数,但是当我 运行 下面的代码时,我得到了一个错误。
def crps_hersbach_numba(obs, fcst_ens, remove_neg=False, remove_zero=False):
"""Calculate the the continuous ranked probability score (CRPS) as per equation 25-27 in
Hersbach et al. (2000)
Parameters
----------
obs: 1D ndarry
Array of observations for each start date
fcst_ens: 2D ndarray
Array of ensemble forecast of dimension n x M, where n = number of start dates and
M = number of ensemble members.
remove_neg: bool
If True, when a negative value is found at the i-th position in the observed OR ensemble
array, the i-th value of the observed AND ensemble array are removed before the
computation.
remove_zero: bool
If true, when a zero value is found at the i-th position in the observed OR ensemble
array, the i-th value of the observed AND ensemble array are removed before the
computation.
Returns
-------
dict
Dictionary contains a number of *experimental* outputs including:
- ["crps"] 1D ndarray of crps values per n start dates.
- ["crpsMean1"] arithmetic mean of crps values.
- ["crpsMean2"] mean crps using eqn. 28 in Hersbach (2000).
Notes
-----
**NaN and inf treatment:** If any value in obs or fcst_ens is NaN or inf, then the
corresponding row in both fcst_ens (for all ensemble members) and in obs will be deleted.
References
----------
- Hersbach, H. (2000) Decomposition of the Continuous Ranked Porbability Score
for Ensemble Prediction Systems, Weather and Forecasting, 15, 559-570.
"""
# Treating the Data
obs, fcst_ens = treat_data(obs, fcst_ens, remove_neg=remove_neg, remove_zero=remove_zero)
# Set parameters
n = fcst_ens.shape[0] # number of forecast start dates
m = fcst_ens.shape[1] # number of ensemble members
# Create vector of pi's
p = np.linspace(0, m, m + 1)
pi = p / m
crps_numba = np.zeros(n)
@njit
def calculate_crps():
# Loop fcst start times
for i in prange(n):
# Initialise vectors for storing output
a = np.zeros(m - 1)
b = np.zeros(m - 1)
# Verifying analysis (or obs)
xa = obs[i]
# Ensemble fcst CDF
x = np.sort(fcst_ens[i, :])
# Deal with 0 < i < m [So, will loop 50 times for m = 51]
for j in prange(m - 1):
# Rule 1
if xa > x[j + 1]:
a[j] = x[j + 1] - x[j]
b[j] = 0
# Rule 2
if x[j] < xa < x[j + 1]:
a[j] = xa - x[j]
b[j] = x[j + 1] - xa
# Rule 3
if xa < x[j]:
a[j] = 0
b[j] = x[j + 1] - x[j]
# Deal with outliers for i = 0, and i = m,
# else a & b are 0 for non-outliers
if xa < x[0]:
a1 = 0
b1 = x[0] - xa
else:
a1 = 0
b1 = 0
# Upper outlier (rem m-1 is for last member m, but python is 0-based indexing)
if xa > x[m - 1]:
am = xa - x[m - 1]
bm = 0
else:
am = 0
bm = 0
# Combine full a & b vectors including outlier
a = np.concatenate((np.array([0]), a, np.array([am])))
# a = np.insert(a, 0, a1)
# a = np.append(a, am)
a = np.concatenate((np.array([0]), a, np.array([bm])))
# b = np.insert(b, 0, b1)
# b = np.append(b, bm)
# Populate a_mat and b_mat
if i == 0:
a_mat = a
b_mat = b
else:
a_mat = np.vstack((a_mat, a))
b_mat = np.vstack((b_mat, b))
# Calc crps for individual start times
crps_numba[i] = ((a * pi ** 2) + (b * (1 - pi) ** 2)).sum()
return crps_numba, a_mat, b_mat
crps, a_mat, b_mat = calculate_crps()
print(crps)
# Calc mean crps as simple mean across crps[i]
crps_mean_method1 = np.mean(crps)
# Calc mean crps across all start times from eqn. 28 in Hersbach (2000)
abar = np.mean(a_mat, 0)
bbar = np.mean(b_mat, 0)
crps_mean_method2 = ((abar * pi ** 2) + (bbar * (1 - pi) ** 2)).sum()
# Output array as a dictionary
output = {'crps': crps, 'crpsMean1': crps_mean_method1,
'crpsMean2': crps_mean_method2}
return output
我得到的错误是这样的:
Cannot unify array(float64, 1d, C) and array(float64, 2d, C) for 'a_mat', defined at *path
File "test.py", line 86:
def calculate_crps():
<source elided>
if i == 0:
a_mat = a
^
[1] During: typing of assignment at *path
File "test.py", line 89:
def calculate_crps():
<source elided>
else:
a_mat = np.vstack((a_mat, a))
^
This is not usually a problem with Numba itself but instead often caused by
the use of unsupported features or an issue in resolving types.
我只是想知道我哪里出错了。 vstack
函数似乎应该可以工作,但也许我遗漏了一些东西。
I just wanted to know where I am going wrong. It seems as though the vstack
function should work but maybe I am missing something.
TL;DR:问题不在于 vstack
。问题是你有代码路径试图将不同类型的数组分配给同一个变量(这会抛出统一异常)。
问题出在这里:
# Populate a_mat and b_mat
if i == 0:
a_mat = a
b_mat = b
else:
a_mat = np.vstack((a_mat, a))
b_mat = np.vstack((b_mat, b))
在第一个代码路径中,您将 1d c-contiguous float64 数组分配给 a_mat
和 b_mat
,在 else
中,它是一个 2d c-contiguous float64 数组。这些类型不兼容,因此 numba 会抛出错误。
numba 代码 不像 Python 代码 那样工作有时很棘手,在这种情况下,当您将某些内容分配给变量时,您拥有什么类型并不重要。但是在最近的版本中,numba 异常消息变得更好,所以如果您知道异常提示的内容,您通常可以快速找出问题所在。
更长的解释
问题在于 numba 会隐式推断变量的类型。例如:
from numba import njit
@njit
def func(arr):
a = arr
return a
这里我没有输入函数所以我需要运行一次:
>>> import numpy as np
>>> func(np.zeros(5))
array([0., 0., 0., 0., 0.])
然后你可以检查类型:
>>> func.inspect_types()
func (array(float64, 1d, C),)
--------------------------------------------------------------------------------
# File: <ipython-input-4-02470248b065>
# --- LINE 3 ---
# label 0
@njit
# --- LINE 4 ---
def func(arr):
# --- LINE 5 ---
# arr = arg(0, name=arr) :: array(float64, 1d, C)
# a = arr :: array(float64, 1d, C)
# del arr
a = arr
# --- LINE 6 ---
# [=14=].3 = cast(value=a) :: array(float64, 1d, C)
# del a
# return [=14=].3
return a
如您所见,变量 a
的输入类型 array(float64, 1d, C)
为 array(float64, 1d, C)
。
现在,让我们使用 np.vstack
代替:
from numba import njit
import numpy as np
@njit
def func(arr):
a = np.vstack((arr, arr))
return a
以及编译它的强制性第一次调用:
>>> func(np.zeros(5))
array([[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]])
然后再次检查类型:
func (array(float64, 1d, C),)
--------------------------------------------------------------------------------
# File: <ipython-input-11-f0214d5181c6>
# --- LINE 4 ---
# label 0
@njit
# --- LINE 5 ---
def func(arr):
# --- LINE 6 ---
# arr = arg(0, name=arr) :: array(float64, 1d, C)
# [=17=].1 = global(np: <module 'numpy'>) :: Module(<module 'numpy'>)
# [=17=].2 = getattr(value=[=17=].1, attr=vstack) :: Function(<function vstack at 0x000001DB7082A400>)
# del [=17=].1
# [=17=].5 = build_tuple(items=[Var(arr, <ipython-input-11-f0214d5181c6> (6)), Var(arr, <ipython-input-11-f0214d5181c6> (6))]) :: tuple(array(float64, 1d, C) x 2)
# del arr
# [=17=].6 = call [=17=].2([=17=].5, func=[=17=].2, args=[Var([=17=].5, <ipython-input-11-f0214d5181c6> (6))], kws=(), vararg=None) :: (tuple(array(float64, 1d, C) x 2),) -> array(float64, 2d, C)
# del [=17=].5
# del [=17=].2
# a = [=17=].6 :: array(float64, 2d, C)
# del [=17=].6
a = np.vstack((arr, arr))
# --- LINE 7 ---
# [=17=].8 = cast(value=a) :: array(float64, 2d, C)
# del a
# return [=17=].8
return a
这次 a
输入为 array(float64, 2d, C)
,输入 array(float64, 1d, C)
。
您可能问过自己我为什么要谈论这个。让我们看看如果您尝试有条件地分配给 a
:
会发生什么
from numba import njit
import numpy as np
@njit
def func(arr, condition):
if condition:
a = np.vstack((arr, arr))
else:
a = arr
return a
如果您现在 运行 代码:
>>> func(np.zeros(5), True)
TypingError: Failed at nopython (nopython frontend)
Cannot unify array(float64, 2d, C) and array(float64, 1d, C) for 'a', defined at <ipython-input-16-f4bd9a4f377a> (7)
File "<ipython-input-16-f4bd9a4f377a>", line 7:
def func(arr, condition):
<source elided>
if condition:
a = np.vstack((arr, arr))
^
[1] During: typing of assignment at <ipython-input-16-f4bd9a4f377a> (9)
File "<ipython-input-16-f4bd9a4f377a>", line 9:
def func(arr, condition):
<source elided>
else:
a = arr
^
这正是您遇到的问题,这是因为 对于一组固定的输入类型 ,numba 中的变量需要且只有一种类型。因为数据类型、等级(维数)和连续 属性 都是类型的一部分,所以您不能将具有不同维数的数组分配给同一变量。
请注意,您可以扩展维度以使其工作并从结果中再次压缩不必要的维度(可能不是很好,但它应该用最少的 "changes":
from numba import njit
import numpy as np
@njit
def func(arr, condition):
if condition:
a = np.vstack((arr, arr))
else:
a = np.expand_dims(arr, 0)
return a
>>> func(np.zeros(5), False)
array([[0., 0., 0., 0., 0.]]) # <-- 2d array!
>>> func(np.zeros(5), True)
array([[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]])
所以我一直在尝试优化一些代码,这些代码根据一些数组数据计算统计误差指标。该指标称为连续排名概率分数 (CRPS)。
我一直在使用 Numba 来尝试加速此计算中所需的双循环,但我一直遇到 numpy.vstack
函数的问题。据我从文档 here 中了解到,应该支持 vstack()
函数,但是当我 运行 下面的代码时,我得到了一个错误。
def crps_hersbach_numba(obs, fcst_ens, remove_neg=False, remove_zero=False):
"""Calculate the the continuous ranked probability score (CRPS) as per equation 25-27 in
Hersbach et al. (2000)
Parameters
----------
obs: 1D ndarry
Array of observations for each start date
fcst_ens: 2D ndarray
Array of ensemble forecast of dimension n x M, where n = number of start dates and
M = number of ensemble members.
remove_neg: bool
If True, when a negative value is found at the i-th position in the observed OR ensemble
array, the i-th value of the observed AND ensemble array are removed before the
computation.
remove_zero: bool
If true, when a zero value is found at the i-th position in the observed OR ensemble
array, the i-th value of the observed AND ensemble array are removed before the
computation.
Returns
-------
dict
Dictionary contains a number of *experimental* outputs including:
- ["crps"] 1D ndarray of crps values per n start dates.
- ["crpsMean1"] arithmetic mean of crps values.
- ["crpsMean2"] mean crps using eqn. 28 in Hersbach (2000).
Notes
-----
**NaN and inf treatment:** If any value in obs or fcst_ens is NaN or inf, then the
corresponding row in both fcst_ens (for all ensemble members) and in obs will be deleted.
References
----------
- Hersbach, H. (2000) Decomposition of the Continuous Ranked Porbability Score
for Ensemble Prediction Systems, Weather and Forecasting, 15, 559-570.
"""
# Treating the Data
obs, fcst_ens = treat_data(obs, fcst_ens, remove_neg=remove_neg, remove_zero=remove_zero)
# Set parameters
n = fcst_ens.shape[0] # number of forecast start dates
m = fcst_ens.shape[1] # number of ensemble members
# Create vector of pi's
p = np.linspace(0, m, m + 1)
pi = p / m
crps_numba = np.zeros(n)
@njit
def calculate_crps():
# Loop fcst start times
for i in prange(n):
# Initialise vectors for storing output
a = np.zeros(m - 1)
b = np.zeros(m - 1)
# Verifying analysis (or obs)
xa = obs[i]
# Ensemble fcst CDF
x = np.sort(fcst_ens[i, :])
# Deal with 0 < i < m [So, will loop 50 times for m = 51]
for j in prange(m - 1):
# Rule 1
if xa > x[j + 1]:
a[j] = x[j + 1] - x[j]
b[j] = 0
# Rule 2
if x[j] < xa < x[j + 1]:
a[j] = xa - x[j]
b[j] = x[j + 1] - xa
# Rule 3
if xa < x[j]:
a[j] = 0
b[j] = x[j + 1] - x[j]
# Deal with outliers for i = 0, and i = m,
# else a & b are 0 for non-outliers
if xa < x[0]:
a1 = 0
b1 = x[0] - xa
else:
a1 = 0
b1 = 0
# Upper outlier (rem m-1 is for last member m, but python is 0-based indexing)
if xa > x[m - 1]:
am = xa - x[m - 1]
bm = 0
else:
am = 0
bm = 0
# Combine full a & b vectors including outlier
a = np.concatenate((np.array([0]), a, np.array([am])))
# a = np.insert(a, 0, a1)
# a = np.append(a, am)
a = np.concatenate((np.array([0]), a, np.array([bm])))
# b = np.insert(b, 0, b1)
# b = np.append(b, bm)
# Populate a_mat and b_mat
if i == 0:
a_mat = a
b_mat = b
else:
a_mat = np.vstack((a_mat, a))
b_mat = np.vstack((b_mat, b))
# Calc crps for individual start times
crps_numba[i] = ((a * pi ** 2) + (b * (1 - pi) ** 2)).sum()
return crps_numba, a_mat, b_mat
crps, a_mat, b_mat = calculate_crps()
print(crps)
# Calc mean crps as simple mean across crps[i]
crps_mean_method1 = np.mean(crps)
# Calc mean crps across all start times from eqn. 28 in Hersbach (2000)
abar = np.mean(a_mat, 0)
bbar = np.mean(b_mat, 0)
crps_mean_method2 = ((abar * pi ** 2) + (bbar * (1 - pi) ** 2)).sum()
# Output array as a dictionary
output = {'crps': crps, 'crpsMean1': crps_mean_method1,
'crpsMean2': crps_mean_method2}
return output
我得到的错误是这样的:
Cannot unify array(float64, 1d, C) and array(float64, 2d, C) for 'a_mat', defined at *path
File "test.py", line 86:
def calculate_crps():
<source elided>
if i == 0:
a_mat = a
^
[1] During: typing of assignment at *path
File "test.py", line 89:
def calculate_crps():
<source elided>
else:
a_mat = np.vstack((a_mat, a))
^
This is not usually a problem with Numba itself but instead often caused by
the use of unsupported features or an issue in resolving types.
我只是想知道我哪里出错了。 vstack
函数似乎应该可以工作,但也许我遗漏了一些东西。
I just wanted to know where I am going wrong. It seems as though the
vstack
function should work but maybe I am missing something.
TL;DR:问题不在于 vstack
。问题是你有代码路径试图将不同类型的数组分配给同一个变量(这会抛出统一异常)。
问题出在这里:
# Populate a_mat and b_mat
if i == 0:
a_mat = a
b_mat = b
else:
a_mat = np.vstack((a_mat, a))
b_mat = np.vstack((b_mat, b))
在第一个代码路径中,您将 1d c-contiguous float64 数组分配给 a_mat
和 b_mat
,在 else
中,它是一个 2d c-contiguous float64 数组。这些类型不兼容,因此 numba 会抛出错误。
numba 代码 不像 Python 代码 那样工作有时很棘手,在这种情况下,当您将某些内容分配给变量时,您拥有什么类型并不重要。但是在最近的版本中,numba 异常消息变得更好,所以如果您知道异常提示的内容,您通常可以快速找出问题所在。
更长的解释
问题在于 numba 会隐式推断变量的类型。例如:
from numba import njit
@njit
def func(arr):
a = arr
return a
这里我没有输入函数所以我需要运行一次:
>>> import numpy as np
>>> func(np.zeros(5))
array([0., 0., 0., 0., 0.])
然后你可以检查类型:
>>> func.inspect_types()
func (array(float64, 1d, C),)
--------------------------------------------------------------------------------
# File: <ipython-input-4-02470248b065>
# --- LINE 3 ---
# label 0
@njit
# --- LINE 4 ---
def func(arr):
# --- LINE 5 ---
# arr = arg(0, name=arr) :: array(float64, 1d, C)
# a = arr :: array(float64, 1d, C)
# del arr
a = arr
# --- LINE 6 ---
# [=14=].3 = cast(value=a) :: array(float64, 1d, C)
# del a
# return [=14=].3
return a
如您所见,变量 a
的输入类型 array(float64, 1d, C)
为 array(float64, 1d, C)
。
现在,让我们使用 np.vstack
代替:
from numba import njit
import numpy as np
@njit
def func(arr):
a = np.vstack((arr, arr))
return a
以及编译它的强制性第一次调用:
>>> func(np.zeros(5))
array([[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]])
然后再次检查类型:
func (array(float64, 1d, C),)
--------------------------------------------------------------------------------
# File: <ipython-input-11-f0214d5181c6>
# --- LINE 4 ---
# label 0
@njit
# --- LINE 5 ---
def func(arr):
# --- LINE 6 ---
# arr = arg(0, name=arr) :: array(float64, 1d, C)
# [=17=].1 = global(np: <module 'numpy'>) :: Module(<module 'numpy'>)
# [=17=].2 = getattr(value=[=17=].1, attr=vstack) :: Function(<function vstack at 0x000001DB7082A400>)
# del [=17=].1
# [=17=].5 = build_tuple(items=[Var(arr, <ipython-input-11-f0214d5181c6> (6)), Var(arr, <ipython-input-11-f0214d5181c6> (6))]) :: tuple(array(float64, 1d, C) x 2)
# del arr
# [=17=].6 = call [=17=].2([=17=].5, func=[=17=].2, args=[Var([=17=].5, <ipython-input-11-f0214d5181c6> (6))], kws=(), vararg=None) :: (tuple(array(float64, 1d, C) x 2),) -> array(float64, 2d, C)
# del [=17=].5
# del [=17=].2
# a = [=17=].6 :: array(float64, 2d, C)
# del [=17=].6
a = np.vstack((arr, arr))
# --- LINE 7 ---
# [=17=].8 = cast(value=a) :: array(float64, 2d, C)
# del a
# return [=17=].8
return a
这次 a
输入为 array(float64, 2d, C)
,输入 array(float64, 1d, C)
。
您可能问过自己我为什么要谈论这个。让我们看看如果您尝试有条件地分配给 a
:
from numba import njit
import numpy as np
@njit
def func(arr, condition):
if condition:
a = np.vstack((arr, arr))
else:
a = arr
return a
如果您现在 运行 代码:
>>> func(np.zeros(5), True)
TypingError: Failed at nopython (nopython frontend)
Cannot unify array(float64, 2d, C) and array(float64, 1d, C) for 'a', defined at <ipython-input-16-f4bd9a4f377a> (7)
File "<ipython-input-16-f4bd9a4f377a>", line 7:
def func(arr, condition):
<source elided>
if condition:
a = np.vstack((arr, arr))
^
[1] During: typing of assignment at <ipython-input-16-f4bd9a4f377a> (9)
File "<ipython-input-16-f4bd9a4f377a>", line 9:
def func(arr, condition):
<source elided>
else:
a = arr
^
这正是您遇到的问题,这是因为 对于一组固定的输入类型 ,numba 中的变量需要且只有一种类型。因为数据类型、等级(维数)和连续 属性 都是类型的一部分,所以您不能将具有不同维数的数组分配给同一变量。
请注意,您可以扩展维度以使其工作并从结果中再次压缩不必要的维度(可能不是很好,但它应该用最少的 "changes":
from numba import njit
import numpy as np
@njit
def func(arr, condition):
if condition:
a = np.vstack((arr, arr))
else:
a = np.expand_dims(arr, 0)
return a
>>> func(np.zeros(5), False)
array([[0., 0., 0., 0., 0.]]) # <-- 2d array!
>>> func(np.zeros(5), True)
array([[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]])