在 numba 中使用 numpy.vstack

Using numpy.vstack in numba

所以我一直在尝试优化一些代码,这些代码根据一些数组数据计算统计误差指标。该指标称为连续排名概率分数 (CRPS)。

我一直在使用 Numba 来尝试加速此计算中所需的双循环,但我一直遇到 numpy.vstack 函数的问题。据我从文档 here 中了解到,应该支持 vstack() 函数,但是当我 运行 下面的代码时,我得到了一个错误。

def crps_hersbach_numba(obs, fcst_ens, remove_neg=False, remove_zero=False):
    """Calculate the the continuous ranked probability score (CRPS) as per equation 25-27 in
    Hersbach et al. (2000)

    Parameters
    ----------
    obs: 1D ndarry
        Array of observations for each start date
    fcst_ens: 2D ndarray
        Array of ensemble forecast of dimension n x M, where n = number of start dates and
        M = number of ensemble members.

    remove_neg: bool
        If True, when a negative value is found at the i-th position in the observed OR ensemble
        array, the i-th value of the observed AND ensemble array are removed before the
        computation.

    remove_zero: bool
        If true, when a zero value is found at the i-th position in the observed OR ensemble
        array, the i-th value of the observed AND ensemble array are removed before the
        computation.

    Returns
    -------
    dict
        Dictionary contains a number of *experimental* outputs including:
            - ["crps"] 1D ndarray of crps values per n start dates.
            - ["crpsMean1"] arithmetic mean of crps values.
            - ["crpsMean2"] mean crps using eqn. 28 in Hersbach (2000).

    Notes
    -----
    **NaN and inf treatment:** If any value in obs or fcst_ens is NaN or inf, then the
    corresponding row in both fcst_ens (for all ensemble members) and in obs will be deleted.

    References
    ----------
    - Hersbach, H. (2000) Decomposition of the Continuous Ranked Porbability Score
      for Ensemble Prediction Systems, Weather and Forecasting, 15, 559-570.
    """
    # Treating the Data
    obs, fcst_ens = treat_data(obs, fcst_ens, remove_neg=remove_neg, remove_zero=remove_zero)

    # Set parameters
    n = fcst_ens.shape[0]  # number of forecast start dates
    m = fcst_ens.shape[1]  # number of ensemble members

    # Create vector of pi's
    p = np.linspace(0, m, m + 1)
    pi = p / m

    crps_numba = np.zeros(n)

    @njit
    def calculate_crps():
        # Loop fcst start times
        for i in prange(n):

            # Initialise vectors for storing output
            a = np.zeros(m - 1)
            b = np.zeros(m - 1)

            # Verifying analysis (or obs)
            xa = obs[i]

            # Ensemble fcst CDF
            x = np.sort(fcst_ens[i, :])

            # Deal with 0 < i < m [So, will loop 50 times for m = 51]
            for j in prange(m - 1):

                # Rule 1
                if xa > x[j + 1]:
                    a[j] = x[j + 1] - x[j]
                    b[j] = 0

                # Rule 2
                if x[j] < xa < x[j + 1]:
                    a[j] = xa - x[j]
                    b[j] = x[j + 1] - xa

                # Rule 3
                if xa < x[j]:
                    a[j] = 0
                    b[j] = x[j + 1] - x[j]

            # Deal with outliers for i = 0, and i = m,
            # else a & b are 0 for non-outliers
            if xa < x[0]:
                a1 = 0
                b1 = x[0] - xa
            else:
                a1 = 0
                b1 = 0

            # Upper outlier (rem m-1 is for last member m, but python is 0-based indexing)
            if xa > x[m - 1]:
                am = xa - x[m - 1]
                bm = 0
            else:
                am = 0
                bm = 0

            # Combine full a & b vectors including outlier
            a = np.concatenate((np.array([0]), a, np.array([am])))
            # a = np.insert(a, 0, a1)
            # a = np.append(a, am)
            a = np.concatenate((np.array([0]), a, np.array([bm])))
            # b = np.insert(b, 0, b1)
            # b = np.append(b, bm)

            # Populate a_mat and b_mat
            if i == 0:
                a_mat = a
                b_mat = b
            else:
                a_mat = np.vstack((a_mat, a))
                b_mat = np.vstack((b_mat, b))

            # Calc crps for individual start times
            crps_numba[i] = ((a * pi ** 2) + (b * (1 - pi) ** 2)).sum()

        return crps_numba, a_mat, b_mat

    crps, a_mat, b_mat = calculate_crps()
    print(crps)
    # Calc mean crps as simple mean across crps[i]
    crps_mean_method1 = np.mean(crps)

    # Calc mean crps across all start times from eqn. 28 in Hersbach (2000)
    abar = np.mean(a_mat, 0)
    bbar = np.mean(b_mat, 0)
    crps_mean_method2 = ((abar * pi ** 2) + (bbar * (1 - pi) ** 2)).sum()

    # Output array as a dictionary
    output = {'crps': crps, 'crpsMean1': crps_mean_method1,
              'crpsMean2': crps_mean_method2}

    return output

我得到的错误是这样的:

Cannot unify array(float64, 1d, C) and array(float64, 2d, C) for 'a_mat', defined at *path

File "test.py", line 86:
    def calculate_crps():
        <source elided>
            if i == 0:
                a_mat = a
                ^

[1] During: typing of assignment at *path

File "test.py", line 89:
    def calculate_crps():
        <source elided>
            else:
                a_mat = np.vstack((a_mat, a))
                ^

This is not usually a problem with Numba itself but instead often caused by
the use of unsupported features or an issue in resolving types.

我只是想知道我哪里出错了。 vstack 函数似乎应该可以工作,但也许我遗漏了一些东西。

I just wanted to know where I am going wrong. It seems as though the vstack function should work but maybe I am missing something.

TL;DR:问题不在于 vstack。问题是你有代码路径试图将不同类型的数组分配给同一个变量(这会抛出统一异常)。

问题出在这里:

# Populate a_mat and b_mat
if i == 0:
    a_mat = a
    b_mat = b
else:
    a_mat = np.vstack((a_mat, a))
    b_mat = np.vstack((b_mat, b))

在第一个代码路径中,您将 1d c-contiguous float64 数组分配给 a_matb_mat,在 else 中,它是一个 2d c-contiguous float64 数组。这些类型不兼容,因此 numba 会抛出错误。 numba 代码 不像 Python 代码 那样工作有时很棘手,在这种情况下,当您将某些内容分配给变量时,您拥有什么类型并不重要。但是在最近的版本中,numba 异常消息变得更好,所以如果您知道异常提示的内容,您通常可以快速找出问题所在。

更长的解释

问题在于 numba 会隐式推断变量的类型。例如:

from numba import njit

@njit
def func(arr):
    a = arr
    return a

这里我没有输入函数所以我需要运行一次:

>>> import numpy as np
>>> func(np.zeros(5))
array([0., 0., 0., 0., 0.])

然后你可以检查类型:

>>> func.inspect_types()
func (array(float64, 1d, C),)
--------------------------------------------------------------------------------
# File: <ipython-input-4-02470248b065>
# --- LINE 3 --- 
# label 0

@njit

# --- LINE 4 --- 

def func(arr):

    # --- LINE 5 --- 
    #   arr = arg(0, name=arr)  :: array(float64, 1d, C)
    #   a = arr  :: array(float64, 1d, C)
    #   del arr

    a = arr

    # --- LINE 6 --- 
    #   [=14=].3 = cast(value=a)  :: array(float64, 1d, C)
    #   del a
    #   return [=14=].3

    return a

如您所见,变量 a 的输入类型 array(float64, 1d, C)array(float64, 1d, C)

现在,让我们使用 np.vstack 代替:

from numba import njit
import numpy as np

@njit
def func(arr):
    a = np.vstack((arr, arr))
    return a

以及编译它的强制性第一次调用:

>>> func(np.zeros(5))
array([[0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.]])

然后再次检查类型:

func (array(float64, 1d, C),)
--------------------------------------------------------------------------------
# File: <ipython-input-11-f0214d5181c6>
# --- LINE 4 --- 
# label 0

@njit

# --- LINE 5 --- 

def func(arr):

    # --- LINE 6 --- 
    #   arr = arg(0, name=arr)  :: array(float64, 1d, C)
    #   [=17=].1 = global(np: <module 'numpy'>)  :: Module(<module 'numpy'>)
    #   [=17=].2 = getattr(value=[=17=].1, attr=vstack)  :: Function(<function vstack at 0x000001DB7082A400>)
    #   del [=17=].1
    #   [=17=].5 = build_tuple(items=[Var(arr, <ipython-input-11-f0214d5181c6> (6)), Var(arr, <ipython-input-11-f0214d5181c6> (6))])  :: tuple(array(float64, 1d, C) x 2)
    #   del arr
    #   [=17=].6 = call [=17=].2([=17=].5, func=[=17=].2, args=[Var([=17=].5, <ipython-input-11-f0214d5181c6> (6))], kws=(), vararg=None)  :: (tuple(array(float64, 1d, C) x 2),) -> array(float64, 2d, C)
    #   del [=17=].5
    #   del [=17=].2
    #   a = [=17=].6  :: array(float64, 2d, C)
    #   del [=17=].6

    a = np.vstack((arr, arr))

    # --- LINE 7 --- 
    #   [=17=].8 = cast(value=a)  :: array(float64, 2d, C)
    #   del a
    #   return [=17=].8

    return a

这次 a 输入为 array(float64, 2d, C),输入 array(float64, 1d, C)

您可能问过自己我为什么要谈论这个。让我们看看如果您尝试有条件地分配给 a:

会发生什么
from numba import njit
import numpy as np

@njit
def func(arr, condition):
    if condition:
        a = np.vstack((arr, arr))
    else:
        a = arr
    return a

如果您现在 运行 代码:

>>> func(np.zeros(5), True)
TypingError: Failed at nopython (nopython frontend)
Cannot unify array(float64, 2d, C) and array(float64, 1d, C) for 'a', defined at <ipython-input-16-f4bd9a4f377a> (7)

File "<ipython-input-16-f4bd9a4f377a>", line 7:
def func(arr, condition):
    <source elided>
    if condition:
        a = np.vstack((arr, arr))
        ^

[1] During: typing of assignment at <ipython-input-16-f4bd9a4f377a> (9)

File "<ipython-input-16-f4bd9a4f377a>", line 9:
def func(arr, condition):
    <source elided>
    else:
        a = arr
        ^

这正是您遇到的问题,这是因为 对于一组固定的输入类型 ,numba 中的变量需要且只有一种类型。因为数据类型、等级(维数)和连续 属性 都是类型的一部分,所以您不能将具有不同维数的数组分配给同一变量。

请注意,您可以扩展维度以使其工作并从结果中再次压缩不必要的维度(可能不是很好,但它应该用最少的 "changes":

from numba import njit
import numpy as np

@njit
def func(arr, condition):
    if condition:
        a = np.vstack((arr, arr))
    else:
        a = np.expand_dims(arr, 0)
    return a

>>> func(np.zeros(5), False)
array([[0., 0., 0., 0., 0.]])  # <-- 2d array!
>>> func(np.zeros(5), True)
array([[0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.]])