tf.dataset 不追加批次
tf.dataset does not append batches
我想让 tf.dataset 工作。下面的代码示例有效,但由于我使用了 .batch(30)
,所以我希望输出的形式为 (30, 300, 300, 1)?
import tensorflow as tf
import numpy as np
input_array = np.random.normal(size=(300, 300, 3))
def own_generator():
yield (input_array, input_array)
dataset = tf.data.Dataset.from_generator(own_generator, (tf.float32, tf.float32)).batch(30)
data_iter = dataset.make_initializable_iterator()
sess = tf.Session()
sess.run(data_iter.initializer)
test_arr = sess.run(data_iter.get_next())
for tuple_elemnt in test_arr:
print(tuple_elemnt.shape)
输出为:
(1, 300, 300, 3)
(1, 300, 300, 3)
发电机被错误编程。这是工作示例:
import tensorflow as tf
import numpy as np
input_array = np.random.normal(size=(300, 300, 3))
def own_generator():
while True:
yield input_array
dataset = tf.data.Dataset.from_generator(own_generator, tf.float32).batch(30)
data_iter = dataset.make_initializable_iterator()
sess = tf.Session()
sess.run(data_iter.initializer)
test_arr = sess.run(data_iter.get_next())
print(test_arr.shape)
我想让 tf.dataset 工作。下面的代码示例有效,但由于我使用了 .batch(30)
,所以我希望输出的形式为 (30, 300, 300, 1)?
import tensorflow as tf
import numpy as np
input_array = np.random.normal(size=(300, 300, 3))
def own_generator():
yield (input_array, input_array)
dataset = tf.data.Dataset.from_generator(own_generator, (tf.float32, tf.float32)).batch(30)
data_iter = dataset.make_initializable_iterator()
sess = tf.Session()
sess.run(data_iter.initializer)
test_arr = sess.run(data_iter.get_next())
for tuple_elemnt in test_arr:
print(tuple_elemnt.shape)
输出为:
(1, 300, 300, 3)
(1, 300, 300, 3)
发电机被错误编程。这是工作示例:
import tensorflow as tf
import numpy as np
input_array = np.random.normal(size=(300, 300, 3))
def own_generator():
while True:
yield input_array
dataset = tf.data.Dataset.from_generator(own_generator, tf.float32).batch(30)
data_iter = dataset.make_initializable_iterator()
sess = tf.Session()
sess.run(data_iter.initializer)
test_arr = sess.run(data_iter.get_next())
print(test_arr.shape)