霍夫线变换实现
Hough Line Transform implementation
我正在尝试实施 Hough Line Transform。
Input. 我正在使用下面的图像作为输入。这条单线预计只会在输出中产生一个正弦波交点。
期望的行为。 我的源代码预计会产生以下输出,因为它是由 AForge 框架的 sample application 生成的。
这里,我们可以看到:
- 输出的尺寸与输入图像相同。
- 几乎在中心看到正弦波的交点。
- 波浪的相交模式很小很简单
当前行为。我的源代码生成以下输出,这与 AForge 生成的输出不同。
- 交点不在中心。
- 波型也不一样
为什么我的代码产生不同的输出?
。
源代码
下面的代码是我自己写的。以下是a Minimal, Complete, and Verifiable源代码。
public class HoughMap
{
public int[,] houghMap { get; private set; }
public int[,] image { get; set; }
public void Compute()
{
if (image != null)
{
// get source image size
int inWidth = image.GetLength(0);
int inHeight = image.GetLength(1);
int inWidthHalf = inWidth / 2;
int inHeightHalf = inHeight / 2;
int outWidth = (int)Math.Sqrt(inWidth * inWidth + inHeight * inHeight);
int outHeight = 180;
int outHeightHalf = outHeight / 2;
houghMap = new int[outWidth, outHeight];
// scanning through each (x,y) pixel of the image--+
for (int y = 0; y < inHeight; y++) //|
{ //|
for (int x = 0; x < inWidth; x++)//<-----------+
{
if (image[x, y] != 0)//if a pixel is black, skip it.
{
// We are drawing some Sine waves. So, it may
// vary from -90 to +90 degrees.
for (int theta = -outHeightHalf; theta < outHeightHalf; theta++)
{
double rad = theta * Math.PI / 180;
// respective radius value is computed
//int radius = (int)Math.Round(Math.Cos(rad) * (x - inWidthHalf) - Math.Sin(rad) * (y - inHeightHalf));
//int radius = (int)Math.Round(Math.Cos(rad) * (x + inWidthHalf) - Math.Sin(rad) * (y + inHeightHalf));
int radius = (int)Math.Round(Math.Cos(rad) * (x) - Math.Sin(rad) * (outHeight - y));
// if the radious value is between 1 and
if ((radius > 0) && (radius <= outWidth))
{
houghMap[radius, theta + outHeightHalf]++;
}
}
}
}
}
}
}
}
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
Bitmap bitmap = (Bitmap)pictureBox1.Image as Bitmap;
int[,] intImage = ToInteger(bitmap);
HoughMap houghMap = new HoughMap();
houghMap.image = intImage;
houghMap.Compute();
int[,] normalized = Rescale(houghMap.houghMap);
Bitmap hough = ToBitmap(normalized, bitmap.PixelFormat);
pictureBox2.Image = hough;
}
public static int[,] Rescale(int[,] image)
{
int[,] imageCopy = (int[,])image.Clone();
int Width = imageCopy.GetLength(0);
int Height = imageCopy.GetLength(1);
int minVal = 0;
int maxVal = 0;
for (int j = 0; j < Height; j++)
{
for (int i = 0; i < Width; i++)
{
double conv = imageCopy[i, j];
minVal = (int)Math.Min(minVal, conv);
maxVal = (int)Math.Max(maxVal, conv);
}
}
int minRange = 0;
int maxRange = 255;
int[,] array2d = new int[Width, Height];
for (int j = 0; j < Height; j++)
{
for (int i = 0; i < Width; i++)
{
array2d[i, j] = (maxRange - minRange) * (imageCopy[i,j] - minVal) / (maxVal - minVal) + minRange;
}
}
return array2d;
}
public int[,] ToInteger(Bitmap input)
{
int Width = input.Width;
int Height = input.Height;
int[,] array2d = new int[Width, Height];
for (int y = 0; y < Height; y++)
{
for (int x = 0; x < Width; x++)
{
Color cl = input.GetPixel(x, y);
int gray = (int)Convert.ChangeType(cl.R * 0.3 + cl.G * 0.59 + cl.B * 0.11, typeof(int));
array2d[x, y] = gray;
}
}
return array2d;
}
public Bitmap ToBitmap(int[,] image, PixelFormat pixelFormat)
{
int[,] imageCopy = (int[,])image.Clone();
int Width = imageCopy.GetLength(0);
int Height = imageCopy.GetLength(1);
Bitmap bitmap = new Bitmap(Width, Height, pixelFormat);
for (int y = 0; y < Height; y++)
{
for (int x = 0; x < Width; x++)
{
int iii = imageCopy[x, y];
Color clr = Color.FromArgb(iii, iii, iii);
bitmap.SetPixel(x, y, clr);
}
}
return bitmap;
}
}
我已经解决了 this link 的问题。这个 link 的源代码是我见过的最好的源代码。
public class HoughMap
{
public int[,] houghMap { get; private set; }
public int[,] image { get; set; }
public void Compute()
{
if (image != null)
{
// get source image size
int Width = image.GetLength(0);
int Height = image.GetLength(1);
int centerX = Width / 2;
int centerY = Height / 2;
int maxTheta = 180;
int houghHeight = (int)(Math.Sqrt(2) * Math.Max(Width, Height)) / 2;
int doubleHeight = houghHeight * 2;
int houghHeightHalf = houghHeight / 2;
int houghWidthHalf = maxTheta / 2;
houghMap = new int[doubleHeight, maxTheta];
// scanning through each (x,y) pixel of the image--+
for (int y = 0; y < Height; y++) //|
{ //|
for (int x = 0; x < Width; x++)//<-------------+
{
if (image[x, y] != 0)//if a pixel is black, skip it.
{
// We are drawing some Sine waves.
// It may vary from -90 to +90 degrees.
for (int theta = 0; theta < maxTheta; theta++)
{
double rad = theta *Math.PI / 180;
// respective radius value is computed
int rho = (int)(((x - centerX) * Math.Cos(rad)) + ((y - centerY) * Math.Sin(rad)));
// get rid of negative value
rho += houghHeight;
// if the radious value is between
// 1 and twice the houghHeight
if ((rho > 0) && (rho <= doubleHeight))
{
houghMap[rho, theta]++;
}
}
}
}
}
}
}
}
看看this C++ code, and this C# code就知道了。所以,复杂而混乱,我的大脑被逮捕了。特别是 C++ 的。我从没想过有人会在一维数组中存储二维值。
我正在尝试实施 Hough Line Transform。
Input. 我正在使用下面的图像作为输入。这条单线预计只会在输出中产生一个正弦波交点。
期望的行为。 我的源代码预计会产生以下输出,因为它是由 AForge 框架的 sample application 生成的。
这里,我们可以看到:
- 输出的尺寸与输入图像相同。
- 几乎在中心看到正弦波的交点。
- 波浪的相交模式很小很简单
当前行为。我的源代码生成以下输出,这与 AForge 生成的输出不同。
- 交点不在中心。
- 波型也不一样
为什么我的代码产生不同的输出?
。
源代码
下面的代码是我自己写的。以下是a Minimal, Complete, and Verifiable源代码。
public class HoughMap
{
public int[,] houghMap { get; private set; }
public int[,] image { get; set; }
public void Compute()
{
if (image != null)
{
// get source image size
int inWidth = image.GetLength(0);
int inHeight = image.GetLength(1);
int inWidthHalf = inWidth / 2;
int inHeightHalf = inHeight / 2;
int outWidth = (int)Math.Sqrt(inWidth * inWidth + inHeight * inHeight);
int outHeight = 180;
int outHeightHalf = outHeight / 2;
houghMap = new int[outWidth, outHeight];
// scanning through each (x,y) pixel of the image--+
for (int y = 0; y < inHeight; y++) //|
{ //|
for (int x = 0; x < inWidth; x++)//<-----------+
{
if (image[x, y] != 0)//if a pixel is black, skip it.
{
// We are drawing some Sine waves. So, it may
// vary from -90 to +90 degrees.
for (int theta = -outHeightHalf; theta < outHeightHalf; theta++)
{
double rad = theta * Math.PI / 180;
// respective radius value is computed
//int radius = (int)Math.Round(Math.Cos(rad) * (x - inWidthHalf) - Math.Sin(rad) * (y - inHeightHalf));
//int radius = (int)Math.Round(Math.Cos(rad) * (x + inWidthHalf) - Math.Sin(rad) * (y + inHeightHalf));
int radius = (int)Math.Round(Math.Cos(rad) * (x) - Math.Sin(rad) * (outHeight - y));
// if the radious value is between 1 and
if ((radius > 0) && (radius <= outWidth))
{
houghMap[radius, theta + outHeightHalf]++;
}
}
}
}
}
}
}
}
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
Bitmap bitmap = (Bitmap)pictureBox1.Image as Bitmap;
int[,] intImage = ToInteger(bitmap);
HoughMap houghMap = new HoughMap();
houghMap.image = intImage;
houghMap.Compute();
int[,] normalized = Rescale(houghMap.houghMap);
Bitmap hough = ToBitmap(normalized, bitmap.PixelFormat);
pictureBox2.Image = hough;
}
public static int[,] Rescale(int[,] image)
{
int[,] imageCopy = (int[,])image.Clone();
int Width = imageCopy.GetLength(0);
int Height = imageCopy.GetLength(1);
int minVal = 0;
int maxVal = 0;
for (int j = 0; j < Height; j++)
{
for (int i = 0; i < Width; i++)
{
double conv = imageCopy[i, j];
minVal = (int)Math.Min(minVal, conv);
maxVal = (int)Math.Max(maxVal, conv);
}
}
int minRange = 0;
int maxRange = 255;
int[,] array2d = new int[Width, Height];
for (int j = 0; j < Height; j++)
{
for (int i = 0; i < Width; i++)
{
array2d[i, j] = (maxRange - minRange) * (imageCopy[i,j] - minVal) / (maxVal - minVal) + minRange;
}
}
return array2d;
}
public int[,] ToInteger(Bitmap input)
{
int Width = input.Width;
int Height = input.Height;
int[,] array2d = new int[Width, Height];
for (int y = 0; y < Height; y++)
{
for (int x = 0; x < Width; x++)
{
Color cl = input.GetPixel(x, y);
int gray = (int)Convert.ChangeType(cl.R * 0.3 + cl.G * 0.59 + cl.B * 0.11, typeof(int));
array2d[x, y] = gray;
}
}
return array2d;
}
public Bitmap ToBitmap(int[,] image, PixelFormat pixelFormat)
{
int[,] imageCopy = (int[,])image.Clone();
int Width = imageCopy.GetLength(0);
int Height = imageCopy.GetLength(1);
Bitmap bitmap = new Bitmap(Width, Height, pixelFormat);
for (int y = 0; y < Height; y++)
{
for (int x = 0; x < Width; x++)
{
int iii = imageCopy[x, y];
Color clr = Color.FromArgb(iii, iii, iii);
bitmap.SetPixel(x, y, clr);
}
}
return bitmap;
}
}
我已经解决了 this link 的问题。这个 link 的源代码是我见过的最好的源代码。
public class HoughMap
{
public int[,] houghMap { get; private set; }
public int[,] image { get; set; }
public void Compute()
{
if (image != null)
{
// get source image size
int Width = image.GetLength(0);
int Height = image.GetLength(1);
int centerX = Width / 2;
int centerY = Height / 2;
int maxTheta = 180;
int houghHeight = (int)(Math.Sqrt(2) * Math.Max(Width, Height)) / 2;
int doubleHeight = houghHeight * 2;
int houghHeightHalf = houghHeight / 2;
int houghWidthHalf = maxTheta / 2;
houghMap = new int[doubleHeight, maxTheta];
// scanning through each (x,y) pixel of the image--+
for (int y = 0; y < Height; y++) //|
{ //|
for (int x = 0; x < Width; x++)//<-------------+
{
if (image[x, y] != 0)//if a pixel is black, skip it.
{
// We are drawing some Sine waves.
// It may vary from -90 to +90 degrees.
for (int theta = 0; theta < maxTheta; theta++)
{
double rad = theta *Math.PI / 180;
// respective radius value is computed
int rho = (int)(((x - centerX) * Math.Cos(rad)) + ((y - centerY) * Math.Sin(rad)));
// get rid of negative value
rho += houghHeight;
// if the radious value is between
// 1 and twice the houghHeight
if ((rho > 0) && (rho <= doubleHeight))
{
houghMap[rho, theta]++;
}
}
}
}
}
}
}
}
看看this C++ code, and this C# code就知道了。所以,复杂而混乱,我的大脑被逮捕了。特别是 C++ 的。我从没想过有人会在一维数组中存储二维值。