从 pdf 文本到文档列中带有文件名的整洁数据框

From pdf text to tidy dataframe with file names in document column

我想分析近 300 个 pdf 文档中的文本。现在我使用 pdftoolstmtidytext 包来阅读文本,将其转换为语料库,然后转换为文档术语矩阵,最后我想将其结构化为整洁的数据框。

我有几个问题:

我有以下可重现的脚本:

library(tidyverse)
library(tidytext)
library(pdftools)
library(tm)
library(broom)

# Create a temporary empty directory 
# (don't worry at the end of this script I'll remove this directory and its files)

dir.create("~/Desktop/sample-pdfs")

# Fill directory with 2 pdf files from my github repo

download.file("https://github.com/thomasdebeus/colourful-facts/raw/master/projects/sample-data/'s-Gravenhage_coalitieakkoord.pdf", destfile = "~/Desktop/sample-pdfs/'s-Gravenhage_coalitieakkoord.pdf")
download.file("https://github.com/thomasdebeus/colourful-facts/raw/master/projects/sample-data/Aa%20en%20Hunze_coalitieakkoord.pdf", destfile = "~/Desktop/sample-pdfs/Aa en Hunze_coalitieakkoord.pdf")

# Create vector of file paths

dir <- "~/Desktop/sample-pdfs"
pdfs <- paste(dir, "/", list.files(dir, pattern = "*.pdf"), sep = "")

# Read the text from pdf's with pdftools package

pdfs_text <- map(pdfs, pdf_text)

# Convert to document-term-matrix

converted <- Corpus(VectorSource(pdfs_text)) %>%
          DocumentTermMatrix()

# Now I want to convert this to a tidy format

converted %>%
          tidy() %>%
          filter(!grepl("[0-9]+", term))

具有以下输出:

# A tibble: 5,305 x 3
   document term           count
   <chr>    <chr>          <dbl>
 1 1        aan              158
 2 1        aanbesteding       2
 3 1        aanbestedingen     1
 4 1        aanbevelingen      1
 5 1        aanbieden          3
 6 1        aanbieders         1
 7 1        aanbod             8
 8 1        aandacht          16
 9 1        aandachtspunt      3
10 1        aandeel            1
# ... with 5,295 more rows

这似乎很有效,但我宁愿将文件名("'s-Gravenhage""Aa en Hunze")作为文档列中的值而不是索引编号。我该怎么做?

期望的输出:

# A tibble: 5,305 x 3
   document      term           count
   <chr>         <chr>          <dbl>
 1 's-Gravenhage aan              158
 2 's-Gravenhage aanbesteding       2
 3 's-Gravenhage aanbestedingen     1
 4 's-Gravenhage aanbevelingen      1
 5 's-Gravenhage aanbieden          3
 6 's-Gravenhage aanbieders         1
 7 's-Gravenhage aanbod             8
 8 's-Gravenhage aandacht          16
 9 's-Gravenhage aandachtspunt      3
10 's-Gravenhage aandeel            1
# ... with 5,295 more rows

从桌面删除下载的文件及其目录运行使用以下行:

unlink("~/Desktop/sample-pdfs", recursive = TRUE)

非常感谢所有帮助!

我建议为您要执行的操作编写一个包装函数,这样您就可以将每个文件名添加为一列。

read_PDF <- function(file){

    pdfs_text <- pdf_text(file)
    converted <- Corpus(VectorSource(pdfs_text)) %>%
          DocumentTermMatrix()
    converted %>%
          tidy() %>%
          filter(!grepl("[0-9]+", term)) %>%

          # add FileName as a column
          mutate(FileName = file)
}

final <- map(pdfs, read_PDF) %>% data.table::rbindlist()

很好的例子!

  • 我添加了几行来添加名称。
  • 不确定是否会丢失文件,我没有遇到这种情况。
  • 只是提到你的文件名不是很标准,建议再次检查名称,还有你在第一个文件的开头有一个撇号。还将建议清洁空间。
  • 我测试的是英文文档,你可以在语料库中添加不同的语言。

代码如下:

library(tidyverse)
library(tidytext)
library(pdftools) 
library(tm)
library(broom)

# Create a temporary empty directory

dir <- "PDFs/"
pdfs <- paste0(dir, list.files(dir, pattern = "*.pdf"))
names <- list.files(dir, pattern = "*.pdf")

# create a table of names
namesDocs <- 
    names %>% 
    str_remove(pattern = ".pdf") %>% 
    as.tibble() %>% 
    mutate(ids = as.character(seq_along(names)))

namesDocs
# Read the text from pdf's with pdftools package

pdfs_text <- map(pdfs, pdftools::pdf_text)

# Convert to document-term-matrix
# add cleaning process

converted <-
    Corpus(VectorSource(pdfs_text)) %>%
    DocumentTermMatrix(
        control = list(removeNumbers = TRUE,
                       stopwords = TRUE,
                       removePunctuation = TRUE))

converted
# Now I want to convert this to a tidy format
# add names of documents

mytable <-
  converted %>%
  tidy() %>%
  arrange(desc(count)) %>% 
  left_join(y = namesDocs, by = c("document" = "ids"))

head(mytable)

View(mytable)

您可以使用 tm 将文档直接读入语料库。 reader readPDF 使用 pdftools 作为引擎。无需先创建一组文本,然后通过语料库将其放入输出。我创建了 2 个示例。第一个与您正在做的事情一致,但首先要通过语料库。第二个纯粹基于 tidyverse + tidytext。无需在 tm、tidytext 等之间切换

示例之间标记数量的差异是由于 tidytext / tokenizer 中的自动清理造成的。

如果您有很多文档要做,您可能希望使用 quanteda 作为您的主力,因为它可以开箱即用地在多个内核上工作,并且可能会加快分词器部分的速度。不要忘记使用 stopwords 包来获取荷兰语停用词的良好列表。如果您需要对荷兰语单词进行 POS 标记,请检查 updipe 包。

library(tidyverse)
library(tidytext)
library(tm)

directory <- "D:/sample-pdfs"

# create corpus from pdfs
converted <- VCorpus(DirSource(directory), readerControl = list(reader = readPDF)) %>% 
  DocumentTermMatrix()


converted %>%
  tidy() %>%
  filter(!grepl("[0-9]+", term))

# A tibble: 5,707 x 3
   document                          term           count
   <chr>                             <chr>          <dbl>
 1 's-Gravenhage_coalitieakkoord.pdf "\ade"             4
 2 's-Gravenhage_coalitieakkoord.pdf "\adeze"           1
 3 's-Gravenhage_coalitieakkoord.pdf "\aeen"            2
 4 's-Gravenhage_coalitieakkoord.pdf "\aer"             2
 5 's-Gravenhage_coalitieakkoord.pdf "\aextra"          2
 6 's-Gravenhage_coalitieakkoord.pdf "\agroei"          1
 7 's-Gravenhage_coalitieakkoord.pdf "\ahet"            1
 8 's-Gravenhage_coalitieakkoord.pdf "\amet"            1
 9 's-Gravenhage_coalitieakkoord.pdf "\aonderwijs,"     1
10 's-Gravenhage_coalitieakkoord.pdf "\aop"            11
# ... with 5,697 more rows

只使用 tidytext 而不是 tm

directory <- "D:/sample-pdfs"

pdfs <- paste(directory, "/", list.files(directory, pattern = "*.pdf"), sep = "")
pdf_names <- list.files(directory, pattern = "*.pdf")
pdfs_text <- map(pdfs, pdftools::pdf_text)


my_data <- data_frame(document = pdf_names, text = pdfs_text)

my_data %>% 
  unnest %>% # pdfs_text is a list
  unnest_tokens(word, text, strip_numeric = TRUE) %>%  # removing all numbers
  group_by(document, word) %>% 
  summarise(count = n())
# A tibble: 4,646 x 3
# Groups:   document [?]
   document                          word                    count
   <chr>                             <chr>                   <int>
 1 's-Gravenhage_coalitieakkoord.pdf 1e                          2
 2 's-Gravenhage_coalitieakkoord.pdf 2e                          2
 3 's-Gravenhage_coalitieakkoord.pdf 3e                          1
 4 's-Gravenhage_coalitieakkoord.pdf 4e                          1
 5 's-Gravenhage_coalitieakkoord.pdf aan                       164
 6 's-Gravenhage_coalitieakkoord.pdf aanbesteding                2
 7 's-Gravenhage_coalitieakkoord.pdf aanbestedingen              1
 8 's-Gravenhage_coalitieakkoord.pdf aanbestedingsprocedures     1
 9 's-Gravenhage_coalitieakkoord.pdf aanbevelingen               1
10 's-Gravenhage_coalitieakkoord.pdf aanbieden                   4
# ... with 4,636 more rows

我认为我在网上找到的最简单的是来自 Julien Brun Text minning

您需要两个包裹

library("readtext")
library("quanteda")

对于此代码,将您的 PDF 命名为 Author_date,并将它们放在您的工作目录中的一个文件夹中例如,我将我的 pdf 放在 PDFs 文件夹中

    # set path to the PDF 
pdf_path <- "PDFs/"

# List the PDFs 
pdfs <- list.files(path = pdf_path, pattern = 'pdf$',  full.names = TRUE) 

# Import the PDFs into R
spill_texts <- readtext(pdfs, 
                        docvarsfrom = "filenames", 
                        sep = "_", 
                        docvarnames = c("First_author", "Year"))

# Transform the pdfs into a corpus object
spill_corpus  <- corpus(spill_texts)
spill_corpus
# Some stats about the pdfs
tokenInfo <- summary(spill_corpus)
tokenInfo